

Rev.A2

Firmware description: Applicable to the main program RevA1.0 and above

Comprehensive battery tester

A trademark or registered trademark of Changzhou Applent Instrument Co., Ltd. Applent Instruments Ltd. Building 14,No.9, Caoxi Road,Wujin District, Changzhou City, Jiangsu Province, China Tel: 0519-88805550 Fax: 0519-86922220 http://www.anbai.cn

Sales email: <u>sales@applent.com</u> Technical support email: <u>tech@applent.com</u> ©2005-2022 Applent Instruments.

Safety Summary

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific WARNINGS elsewhere in this manual may impair the protection provided by the equipment. In addition it violates safety standards of design, manufacture, and intended use of the instrument.

Disclaimer	The Applent Instruments assumes no liability for the customer's failure to comply with these requirements.
Ground The Instrument	To avoid electric shock hazard, the instrument chassis and cabinet must be connected to a safety earth ground by the supplied power cable with earth blade.
DO NOT Operate In An Explosive Atmosphere	Do not operate the instrument in the presence of inflammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.
Keep away from live circuit	Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with the power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.
Operations not included in the manual are forbidden	The protection measurements will be failure while beyond the scope.
\triangle	Warning: TO AVOIDE INSTRUMENT DAMAGED, PLEASE DO NOT PUT DC VOLT OR CURRENT IN THE TESR TERMINAL MAKE SURE THE CAPACITOR IS DISCHARGED BEFORE TESTING

Safety Sign:

Provide double insulation or reinforced insulation protection

Waste Electrical and Electronic Equipment (WEEE) order 2002/96/EC

Do not dispose of in trash cans

Statement: , Applent, , Statement, The Applent logo and characters are the trademark or registered trademark of Changzhou Applent Precision Instrument Co., LTD.

CERTIFIACTION, LIMITED & LIMITATION OF LIABILITY

Changzhou Applent Instruments LTD. (hereinafter referred to as Applent) guarantees that each instrument you buy is fully qualified in quality and measurement. This guarantee does not include fuse and cause cover Damage caused by accidental, misuse, pollution, accidental or abnormal use. This warranty applies only to the original purchaser and is not transferable.

From the date of shipment, Applent provides two years of free warranty, this guarantee also includes VFD or LCD. During the warranty period, the instrument is damaged due to improper operation by the user, and the maintenance cost shall be borne by the user. In two years until the life of the instrument, Applent will provide maintenance at a fee. For the VFD or LCD replacement, the fee is charged at the current cost price.

If you find any damage to the product, please contact Applent and communicate to return or replace it, and then send the product to the seller for return and replacement. Please be sure to explain the cause of the product damage and advance the postage and insurance premium to the destination. For the repair or replacement of the products during the warranty period, Applent will be responsible for the transportation costs of the return mail. For the repair of non-warranty products, Applent will evaluate the maintenance costs and repair the products only with your consent. All costs incurred by the repair will be borne by the user, including the transportation costs returned.

This warranty is the only warranty provided by Applent and the only compensation to you, without any express or implied warranty (including the adaptability of a special purpose) and specifically denying all other warranties. Applent or any other distributor does not have any oral or written representation used to establish a warranty or in any way to extend the scope of this warranty. Applent shall not be responsible for any special, indirect, incidental or subsequent damage, loss (including loss of data) caused by any reason outside the scope of the specifications. If one of these clauses contradicts the local regulations, mainly the local regulations, so this clause may not apply to you, but the ruling of this clause does not affect the validity and enforceability of the other provisions.

The People's Republic of China (PRC) Jiangsu Province Changzhou Applent Instruments LTD May 2014 Rev.C0

Contents

SAFETY SU	JMMARY	2
CERTIFIA	ACTION, LIMITED & LIMITATION OF LIABILITY	3
1. INSTALLA	ATION AND SETUP WIZARD	9
1.1 PACKI	NG LIST	9
1.2 Powi		9
1.3 OPER	ATING ENVIRONMENT	9
1.4 CLEAI	NING	
2. OVERVIE	W	
2.1 INTRO	DDUCTION	11
2.2 MAIN	I SPECIFICATIONS	11
2.3 THE N	VAIN FUNCTION	
2.3.11	est frequency	
2.3.37	Frigger mode	
2.3.4 (Calibration function	
2.3.5 \$	System settings	
2.3.6 li	nterface	
3. START		
3.1 FRON	DANEL	13 1/1
4. [MEAS] I	TANLE	
4.1 < Co	MPREHENSIVE TEST > PAGE	15
4.1.1	[Type]	15
4.1.2	[Capacity]	
4.1.3	[Group]	
4.1.4	[Configuration]	
4.1.5	[Voltage]	16
4.1.6	[Step-count]	17
4.2 < Gr	OUP CONFIGURATION >PAGE	
4.2.1	[Battery voltage]	
4.2.2	[Battery capacity]	
4.2.3	【Voltage range】	18
4.2.4	【Resistance range】	
4.2.5	【Continuously】	18
4.2.6	【Load range】	
4.2.7	【Step-count】	19
4.2.8	【Test function】	19
4.2.9	【Upper resistance limit】	
4.2.10	【Lower resistance limit】	
4.3 < Gr	OUP TEST RESULTS >PAGE	
4.4 < voi	LTAGE INTERNAL RESISTANCE TEST > PAGE	
4.4.1	【Short circuit clearing】	
4.4.2	[Resistance range]	
4.4.3	[Voltage range]	23
4.4.4	[Upper resistance limit]	
4.4.5	[Lower resistance limit]	23

4.4.6	【Upper voltage limit】	23
4.4.7	【Lower voltage limit】	23
4.5 < Dc	LOAD TEST > PAGE	24
4.5.1	【Model】	24
4.5.2	【Upper voltage limit setting】	26
4.5.3	[Current upper limit setting]	26
4.5.4	[Upper power limit setting]	26
4.5.5	【Parameter setting】	26
4.6 < DC	POWER TEST > PAGE	27
4.6.1	[Voltage setting]	27
4.6.2	[Current setting]	27
4.7 < BA	TERY CAPACITY TEST > PAGE	27
4.7.1	[Document]	28
4.7.2	[Set up]	28
4.8 < FIL	<pre>> PAGE</pre>	29 20
4.0.1	[Dattery voltage]	29
4.0.2		29
4.8.3		29
4.0.4 1 0 E	[Charging voitage]	02
4.8.5		30
4.8.0	[Discharging current]	30
4.8.7		30
4.8.8	[Predischarge]	30
4.8.9	[Cycles]	31
5.1 < SET	UP> PAGE	32
5.1.1	【Resistance range】	32
5.1.2	【Voltage range】	33
5.1.3	【Upper resistance limit】	33
5.1.4	[Lower resistance limit]	33
5.1.5	【Upper voltage limit】	33
5.1.6	【Lower voltage limit】	33
5.1.7	【Load mode】	33
5.1.8	【Load voltage】	34
5.1.9	[Load current]	34
5.1.10	【Load power】	34
5.1.11	[Power supply voltage]	34
5.1.12	[Supply current]	34
5.1.13		34
5.1.14	[Buzzing alarm]	
5 1 15	[Inaualified ston]	25
5 1 16	[Rate]	25
5.2 < U [DISK SETTINGS > PAGE	35

6. SYSTEM CONFIGURATION	36
6.1 < SYSTEM CONFIGURATION> PAGE	36
6.1.1 【LANGUAGE】	36
6.1.2 【DATE】、【TIME】	
6.1.3 【ACCOUNT】、【PASSWORD】	
6.1.4 【REMOTE】	
6.1.5 [STATION NO]	
6.1.6 【BAUDRATE】	
6.1.7 [PROTOCOL]	
6.1.8 [SHAKEHAND]	
6.1.9 [RESULT SEND]	
6.2 <system information="">PAGE</system>	40
7. REMOTE CONTROL	
7.1 ABOUT RS-232C	
7.2 About USB adapter (optional)	
7.3 Select baud rate	
7.4 SCPI LANGUAGE	42
8. SCPI COMMAND REFERENCE	43
8.1 Command string parsing	
8.1.1 Command parsing rules	43
8.1.2 Symbol Convention and Definition	43
8.1.3 Command Tree Structure	
8.1.4 COMMAND	44
8.1.5 PARAMETERS	44
8.1.6 Separator	45
8.2 COMMAND REFERENCE	45
8.2.1 BASIC subsystem	45
8.2.2 GROUP subsystem	47
8.2.3 VR subsystem	55
8.2.4 DCLOAD subsystem	57
8.2.5 DCPOWER Subsystem	58
8.2.6 CAPACITY Subsystem	
8.2.7 POWER subsystem	62
8.2.8 ERROR subsystem	62
8.2.9 IDN subsystem	
9. MODBUS(RIU) PROTOCOL	
9.1 DAIA FORMAI	
9.1.1 Communic pursing rules	
9.1.2 Chc-10 Culculation method	
9.1.3 No response	
9.1.5 Fror Code	
9 2 FUNCTION CODE	66
9.3 REGISTER	
9.4 Read out multiple registers	67
9.5 Write to multiple registers	
9.6 Есно теят	
10. MODBUS(RTU) INSTRUCTION SET	
10.1 Register overview	70
10.2 BATTERY CAPACITY REGISTER	73
10.2.1 Battery capacity test status register 【2000】	73
10.2.2 Battery capacity file number register 【2001】	74
10.2.3 Battery capacity Battery type register 【2002】	75

10.2.4 Battery nominal voltage register 【2003】	75
10.2.5 Battery nominal capacity state register 【2005】	76
10.2.6 Battery charging voltage register 【2007】	76
10.2.7 Battery charge current register 【2009】	77
10.2.8 Battery discharge current register 【200B】	77
10.2.9 Battery cutoff voltage register 【200D】	
10.2.10 Battery capacity pre-discharge register 【2010】	78
10.2.11 Battery capacity cycle number register 【2011】	
10.2.12 Battery Capacity test result register 【2012】	79
10.3 Voltage internal resistance test register	80
10.3.1 Resistance range mode register 【2100】	80
10.3.2 Resistance range number register 【2101】	80
10.3.3 Voltage-range mode register 【2102】	81
10.3.4 Voltage and range number register 【2103】	81
10.3.5 Upper resistance limit register 【2104】	82
10.3.6 Lower resistance register 【2106】	82
10.3.7 Upper-voltage limit register 【2108】	83
10.3.8 Lower-voltage limit register 【210A】	83
10.3.9 Resistance test result register 【210C】	84
10.3.10 Voltage test result register 【210E】	84
10.4 The DC load test register	84
10.4.1 Load test status register 【2200】	
10.4.2 Load test mode register 【2201】	85
10.4.3 Upper-voltage limit register 【2202】	85
10.4.4 Current upper limit register 【2204】	86
10.4.5 Power limit register 【2206】	86
10.4.6 Voltage setting value register 【2208】	87
10.4.7 Current setting point register 【220A】	87
10.4.8 The Power Setpoint register 【220C】	88
10.4.9 Resistance setpoint register 【220E】	88
10.4.10 Voltage result register 【2210】	89
10.4.11 Current result register 【2212】	89
10.4.12 Power result register 【2214】	89
10.4.13 Resistance result register 【2216】	90
10.5 THE DC POWER SUPPLY TEST REGISTER	90
10.5.1 Power supply test status register 【2300】	90
10.5.2 Voltage output register 【2302】	90
10.5.3 Current output register 【2304】	91
10.5.4 Voltage result register 【2306】	
10.5.5 Current result register 【2308】	92
10.5.6 Power result register 【230A】	
10.5.7 Resistance result register 【230C】	92

	10.6 INTEGRATED TEST REGISTER	
	10.6.1 Integrated test status register 【2400】	
	10.6.2 Group test file register 【2401】	
	10.6.3 Group test battery type register 【2402】	
	10.6.4 Nominal voltage value register 【2404】	94
	10.6.5 Nominal capacity value register 【2408】	
	10.6.6 Group test mode register 【240A】	
	10.6.7 Group test total step number register 【240B】	
	10.6.8 The Group tests the current step number register [240C]	
	10.6.9 Charae value reaister 【2410】	
	10.6.10 Start the current value register [2412]	
	10.6.11 Cut-off current value reaister 【2414】	
	10.6.12 Stepper current value register [2416]	98
	10 6 13 The cluster test time register [2418]	99
	10.6.14 Upper voltage limit register [241A]	99
	10.6.15 Lower voltage limit register [2410]	100
	10.6.16 Current limit register $[2416]$	
	10.6.17 Current down-limit register [2420]	100
	10.6.19 Unper resistance limit register $[2420]$	
	10.0.10 Opper resistance limit register [2422]	101
	10.6.19 Resistance lower limit register [2424]	
	10.6.20 Opper time limit register [2426]	
	10.6.21 Time lower limit register [2428]	
	10.6.22 Voltage-range mode register 【242A】	104
	10.6.23 Voltage and range number register 【242B】	
	10.6.24 Resistance range mode register [242C]	105
	10.6.25 Resistance range number register 【242D】	
	10.6.26 The cluster test function register 【242E】	
	10.6.27 Voltage result register 【2430】	106
	10.6.28 Current result register 【2432】	106
	10.6.29 Resistance result register 【2434】	
	10.6.30 Time result register 【2436】	
	10.7 Base setting of the register	107
	10.7.1 Integrated test status register 【3000】	
	10.7.2 The buzzer register 【3001】	
	10.7.3 Unqualified stop register [3002]	
-	11. PROCESSOR (HANDLER) INTERFACE	109
	12. SPECIFICATIONS	110
	12.1 QUALIFICATION	
	12.2 GENERAL REQUIREMENTS	
	12.3 LINVIRONIVIENTAL REQUIREIVIENTS	

1.Installation and Setup Wizard

Thank you for purchasing our products! Please read this chapter carefully before using it. The following introduction mainly takes AT5800 as an example.

In this chapter, you will learn the following: • Packing list

- Power requirement
- Operating environment
- Wash
- Instrument handle

1.1 Packing list

Before using the instrument, please first:

- 1. Check whether the appearance of the product is damaged, scratched or not;
- 2. Check the instrument accessories against the instrument packing list for loss.

If there is any damage or insufficient accessories, please contact the sales department or seller of Applent Instruments immediately.

1.2 **Power supply requirements**

The AT5800 tester can only be used under the following power supply conditions:

Voltage: 200V-240VAC Frequency: 47.5-52.5Hz

Power: 120VA max

Warning: To prevent the danger of electric shock, please connect the power ground wire. If the user changes the power cord, make sure that the ground of the power cord is reliably connected.

1.3 **Operating environment**

AT5800 must be used under the following environmental conditions:

Temperature: $0^{\circ}C \sim 55^{\circ}C$, Humidity: less than 70%RH at 23°C Altitude: $0 \sim 2000$ meters.

1.4 Cleaning

Do not clean the inside of the instrument.

Note: Do not use solvents (alcohol or gasoline, etc.) to clean the instrument.

Please use a clean cloth dipped in a little water to clean the shell and panel.

1.5 Instrument handle

The handle of the instrument can be adjusted. Hold both sides of the handle with both hands, gently pull to both sides, and then rotate the handle. The handle can be adjusted to four positions, as shown in the following figure:

Picture 1- 1 Handle of the instrument (schematic diagram, panel figure is inconsistent with the actual situation)

Visible position 1 [Hold both sides of the handle with both hands at the same time, gently pull to both sides until it can rotate freely, and then switch to visible

Handheld position

Visible position 2 [Hold both sides of the handle with both hands, gently pull to both sides until it can rotate freely, and then switch to the hand-held position]

Remove the handle position. (Pull to both sides 1 until the handle is removed.)

2. Overview

You will learn the following in this chapter:

- Introduction
- Main specifications

2.1 Introduction

Thank you for purchasing AT5800 comprehensive safety tester.

AT5800 comprehensive safety tester is controlled by high-performance ARM microprocessor, which has excellent speed and performance. Five test functions are provided: programmable DC power supply, DC electronic load, battery internal resistance test, battery capacity test and comprehensive test.

You can use the built-in file editor of the instrument or RS232 interface to edit the comprehensive test list and complete the efficient test. The instrument can realize data acquisition, analysis and printing through computer software.

Support USB disk storage to store sampling data in real time.

2.2 Main specifications

AT5800 series technical specifications, including the basic technical indicators of the instrument and the allowable range of instrument testing. These specifications can be achieved when the instrument leaves the factory.

AC internal resistance test	Resistance test range	0.0001mΩ~300Ω, 0.5%	
range	Test range of voltage	0.00001~80.0000V, 0.01%	
	Output maximum voltage	30V (0.05%, ±6dgt)	
	Output maximum current	5A (0.3%, ±6dgt)	
Internal programmable	Ripple voltage	5mVrms	
power supply	Ripple current	5mA	
	Load adjustment rate	<1%	
	Test range of voltage	0~30.000V, 0.05%	
	T	0~3.0000, 0.1%	
Internal are arounded DC	rest range of current	0~15.000, 0.2%	
load	Over-current measurement Range	0.001~15.000A,	
	Maximum continuous power	100W	
DC internal resistance test	0~1000mΩ		
Battery capacity test	0.001~9999.9AH		

2.3 The main function

2.3.1 Test frequency

1kHz, frequency stability: 20ppm

2.3.2 measuring range

Battery internal resistance test: Resistance: use 6-range test, 3Mω ~ 300ω. Voltage: 80VDC Automatic and manual range.

DC load: Current: 2-range test, 3A~15A. Voltage: 30V

2.3.3 Trigger mode

Internal and external (including manual and remote triggering)

2.3.4 Calibration function

Battery internal resistance test:

Clear "0" for full range short circuit: eliminate the influence of lead resistance and stray voltage.

2.3.5 System settings

- 1. Buzzing alarm settings
- 2. Keyboard locking function
- 3. Administrator and user account, and password can be set for administrator.

2.3.6 Interface

RS232 remote control

Support the baud rate of 115200bps, compatible with SCPI protocol and MODBUS protocol.

Handler interface

All optocoupler isolation, input and output ports with built-in pull-up resistors.

Support internal 5V and external maximum 35V power supply.

Input: trigger signal.

Output: sorting result signal and measuring synchronization signal.

3.Start

You will learn the following in this chapter:

- Front panel and rear panel.
- Connection of test end.

3.1 Front panel

chart 3- 1 Front panel function description

No.	Function	
	Power switch. Touch button	
1	Δ Warning: In order to ensure the stable operation of the instrument,	
	the instrument needs to wait 10 seconds after shutdown before being	
	allowed to start again.	
2	USB Disk interface	
3 Functional key		
4 Sidebar function keys		
5 Status lamp		
6	Test port	
7	Numeric keyboard	
8 Direction key		
9	liquid crystal display	

3.2 Rear panel

Picture 3-2 Rear panel

Chart 3- 2 Function description of rear panel

No.	Function
1	Grounding column
2	~220V Ac power input
3	RS232/485 communication port
4	HANDLER interface

4. [Meas] Measurement display

You will learn all the measurement display functions in this chapter:

- < Comprehensive test > page
- < Group configuration > page
- < Group test results > page
- < Comprehensive test results > page
- < Voltage internal resistance test > page
- < DC load test > page
- < DC power supply test > page
- < Battery capacity test > page

4.1 < Comprehensive test > page

No matter what page you are on, just press the [Meas] shortcut key and select [Group Test] in the sidebar to enter the < Comprehensive Test > page.

The < comprehensive test > page mainly carries out comprehensive function tests, including battery activation, voltage internal resistance, charging test, overcharge test, DC internal resistance, load test, overdischarge test, short circuit test and recovery test.

Picture 4-1 < Comprehensive test > page

<pre>GROUP GROUP:</pre>	TEST> TYPE: GROUP1	Li CONFIG	CAP: VOL:	0.001 AH 10.000 V	VOL RES
R U T	1.57 8.21	31 Ω 51 V	STEP FUNC VH: VL: TH: TL:	:01/01 :SHORT 3000.0 Ω 1.0000mΩ 30.000 V 0.001 V	DC LOAD DC POWER
	•	.0 °			BATTERY CAPACITY
USB Disk Re	ady.	START	STOP	KEY LOCK	GROUP TEST

4.1.1 **[**Type]

■To set the battery type

First	Press the [Meas] short Comprehensive Test > page	cut key, and select [Group Test] in the sidebar to enter the < ge.	
Second	Use the cursor keys to	select the [Lithium Battery] field.	
Third	Select using function keys.		
	Functional key	Function	
	Lithium battery	Set the test battery type as lithium battery.	

Nickel-hydrogen battery	Set the test battery type to Ni-MH battery.
Nickel-cadmium/nicad battery	Set the test battery type as nickel-chromium battery.
Lead-acid cell	Set the test battery type to lead-acid battery.

4.1.2 [Capacity]

■ To set the nominal capacity of the battery

Step 1	Press the [Meas] shortcut key, and select [Group Test] in the sidebar to enter the < Comprehensive Test > page.	
Step 2	Use the cursor keys to select the [0.001AH] field.	
Step 3	Use the numeric keypad to enter the nominal capacity value of the battery.	

4.1.3 [Group]

The instrument supports 10 test groups.

■To set up a test group

Step 1	Press the [M Comprehensiv	'ess the [Meas] shortcut key, and select [Group Test] in the sidebar to enter the < omprehensive Test > page.		
Step 2	Use the curs	sor keys to select the [Group 1] field.		
Step 3	Select using	function keys.		
	Functional key	Function		
	Group 1	Set the test group to 01		
	Group 2	Set the test group to 02		
	Group 10	Set the test group to 10		

4.1.4 [Configuration]

■ To set up a group configuration

Step 1	Press the [Meas] shortcut key, and select [Group Test] in the sidebar to enter the < Comprehensive Test > page.		
Step 2	Use the cursor	keys to select the [Configuration] field.	
Step 3	Select using fu	inction keys.	
	Functional key	Function	
	Parameter configuration	Enter the setting page of group parameters.	
	test result	Enter the group test result display page.	
	Step number setting	Set the maximum test step of the group.	
	reset	Restore the current group to factory settings.	

4.1.5 [Voltage]

■ To set the nominal voltage of the battery

Step 1	Press the [Meas] shortcut key, and select [Group Test] in the sidebar to enter the < Comprehensive Test > page.
Step 2	Use the cursor keys to select the [10.000V] field.

Step 3 Use the numeric keypad to enter the nominal voltage value of the battery.

4.1.6 [Step-count]

■Set the step of the current step.

Step 1	Press the [Meas] shortcut key, and select [Group Test] in the sidebar to enter the < Comprehensive Test > page.		
Step 2	Use the cursor keys to select the [01/09] field.		
Step 3	Select using function keys.		
	Functional	Function	
	key	Function	
	Last step	Select the previous test item of the current step.	
	Next step	Select the next test item of the current step.	

4.2 < Group configuration > PAGE

On which page, just press the [Meas] shortcut key, select [Comprehensive Test] in the sidebar, and enter the < Comprehensive Test > page. Use the cursor key to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the < Group Configuration > page.

In the < Group configuration > page, you can set up 10 kinds of test function combinations, which support 20 steps in total.

Picture 4-2 < Group configuration >PAGE

<group con<="" th=""><th>FIG></th><th></th><th></th><th></th></group>	FIG>			
BAT VOL: VOL RANGE: MODE:	10.000 ∪ [0]AUTO CONT	CAPACITY: RES_RANGE: LOAD_RANGE:	0.001 AH [0]AUTO [:3A	
STEP: RES HIGH: VOL HIGH:	STEP01 3000.0 Ω 30.000 V	TEST FUNC: RES LOW: VOL LOW:	BAT RES 1.0000 mΩ 0.001 V	
TIME:	3.0 S			STEP+
		RETURN	KEY LOCK	STEP-

4.2.1 [Battery voltage]

■ To set the nominal voltage of the battery

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.
Step 2	Use the cursor keys to select the [10.000V] field.
Step 3	Use the numeric keypad to enter the nominal voltage value of the battery.

4.2.2 [Battery capacity]

■ To set the nominal capacity of the battery

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.
Step 2	Use the cursor keys to select the [0.001AH] field.
Step 3	Use the numeric keypad to enter the nominal capacity value of the battery.

4.2.3 [Voltage range]

■To set the voltage range

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.		
Step 2	Use the curs	or keys to select the [[0] Auto] field.	
Step 3	Select using	function keys.	
	Functional key	Function	
	Automatic measuring range	The instrument will automatically select the range.	
	Manual range	The instrument is locked in the current range.	
	Increase+	Increase the range number and change the range to lock.	
	Reduce-	Decrease the quantum number and change the quantum to lock.	

4.2.4 [Resistance range]

■To set the resistance range

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.		
Step 2	Use the curs	sor keys to select the [[0] Auto] field.	
Step 3	Select using	function keys.	
	Functional key	Function	
	Automatic measuring range	The instrument will automatically select the range.	
	Manual range	The instrument is locked in the current range.	
	Increase+	Increase the range number and change the range to lock.	
	Reduce-	Decrease the quantum number and change the quantum to lock.	

4.2.5 [Continuously]

■To set the group test mode

	Press the [Meas] shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive
Step 1	Test > page, use the cursor to select the [Configuration] field, and press the function key
-	[Parameter Configuration] to enter the[Group Configuration] page.

Step 2	Use the cursor keys to select the [Continuous] field	
Step 3	Select using function keys.	
	Functional key	Function
	Continuously	Group tests are automatically performed in the set order.
	One step	The group test is suspended after the current step, and a trigger signal is needed to perform the next test.

4.2.6 [Load range]

■To set the group test mode

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.		
Step 2	Use the cursor keys to select the [Load Range] field.		
Step 3	Select using function keys.		
	Functional key	Function	
	Continuously	Group tests are automatically performed in the set order.	
	One step	The group test is suspended after the current step, and a trigger signal is needed to perform the next test.	

4.2.7 [Step-count]

■Set the step of the current step.

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.	
Step 2	Use the cursor keys to select the [Step 01] field.	
Step 3	Select using function keys.	
	Functional key	Function
	Last step	Select the previous test step.
	Next step	Select the next test step.

4.2.8 [Test function]

■To set up a function

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.		
Step 2	Use the cursor keys	to select the [Battery Internal Resistance] field.	
Step 3	Select using function keys.		
	Functional key	Function	
	empty	Set the test function of the current step to null.	
	Activate battery Set the test function of the current step to battery activation.		
	Battery internal resistance	Set the test function of the current step to the battery internal resistance.	
	Charging test	Set the test function of the current step to charge test.	
	Overcharge test	Set the test function of the current step to overcharge test.	

DC internal resistance	Set the test function of the current step to DC internal resistance.
Discharge test	Set the test function of the current step to discharge test.
Overdischarge test	Set the test function of the current step to over-discharge test.
Short circuit test	Set the test function of the current step to short circuit test.
Recovery test	Set the test function of the current step to recovery test.

* Other steps are set as above.

4.2.9 [Upper resistance limit]

■To set the upper resistance limit

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.
Step 2	Use the cursor keys to select the [3000.0 Ω] field.
Step 3	Use the numeric keypad to enter the set upper resistance value.

* Please refer to the above operation for setting other parameters.

4.2.10 [Lower resistance limit]

■To set the lower resistance limit

Step 1	Press the[Meas]shortcut key, select [Group Test] in the sidebar to enter the < Comprehensive Test > page, use the cursor to select the [Configuration] field, and press the function key [Parameter Configuration] to enter the[Group Configuration] page.
Step 2	Use the cursor keys to select the [1.0000 m Ω] field.
Step 3	Use the numeric keypad to enter the set lower resistance value.

* Please refer to the above operation for setting other parameters.

4.3 < Group result > PAGE

On which page, just press the [Meas] shortcut key, select [Comprehensive Test] in the sidebar, and enter the < Comprehensive Test > page. Use the cursor key to select the [Configuration] field, and press the function key [Test Results] to enter the < Group Result> page.

On the < Group Result > page, you can view the test results of each step of the group test.

F 18.			
<pre> GROUP RESULT> 01 BAT RES </pre>	Ω	V PASS	
			PAGE+
11:26 📙 🖫	START RET	JRN KEY LOCK	PAGE-

Picture 4-3 < Group Result > page

4.4 < VOLRES TEST > page

On which page, just press the [Meas] shortcut key and select [Voltage Internal Resistance] in the sidebar to enter the < Vol Res Test > page.

4.4.1 [Short clear]

■To set short circuit clearing

Step 1	Press the [Meas] shortcut key, and select [Voltage Internal Resistance] in the sidebar to enter the < Vol Res Test > page.	
Step 2	Use the curs	sor keys to select the [short clear] field.
Step 3	Select using	function keys.
	Functional key	Function
	Short circuit clearing	When the measured resistance value is very small $(3M\Omega \text{ and } 30m\Omega \text{ range})$, the voltage signal generated after the test current flows through the resistance will be very weak (only a few mV at the maximum), so the position, length and shape of the test wire will all affect the measurement. Usually, where we measure, we also need to clear it at the corresponding position.
		Ready to clear.

4.4.2 [Resistance range]

■ To set the resistance range

Step 1	Press the [Meas] shortcut key, and select [Voltage Internal Resistance] in the sidebar to enter the < Vol Res Test > page.	
Step 2	Use the cursor keys to select the [[3] Auto] field.	
Step 3	Select using function keys.	
	functional key	function
	Automatic measuring range	The instrument will automatically select the range.
	Manual range	The instrument is locked in the current range.
	Increase+	Increase the range number and change the range to lock.
	Reduce-	Decrease the quantum number and change the quantum to lock.

4.4.3 [Voltage range]

■To set the voltage range

Step 1	Press the [Meas] shortcut key, and select [Voltage Internal Resistance] in the sidebar to enter the < Vol Res Test > page.			
Step 2	Use the curso	Use the cursor keys to select the [[1] Auto] field.		
Step 3	Select using f	Select using function keys.		
	functional key	function		
	Automatic measuring range	The instrument will automatically select the range.		
	Manual range	The instrument is locked in the current range.		
	Increase+ Increase the range number and change the range to lock.			
	Reduce-	Decrease the quantum number and change the quantum to lock.		

4.4.4 [Upper resistance limit]

■To set the upper resistance limit

Step 1	Press the [Meas] shortcut key, and select [Voltage Internal Resistance] in the sidebar to enter
Step 2	Use the cursor keys to select the $[1.0000\Omega]$ field.
Step 3	Use the numeric keypad to enter the set upper resistance value.

4.4.5 [Lower resistance limit]

■To set the lower resistance limit

Step 1	Press the [Meas] shortcut key, and select [Voltage Internal Resistance] in the sidebar to enter the < Voltage Internal Resistance Test > page.
Step 2	Use the cursor keys to select the [1.0000 m Ω] field.
Step 3	Use the numeric keypad to enter the set lower resistance value.

4.4.6 [Upper voltage limit]

■To set the upper resistance limit

Step 1	Press the [Meas] shortcut key, and select [Voltage Internal Resistance] in the sidebar to enter the < Vol Res Test > page.
Step 2	Use the cursor keys to select the [10.000V] field.
Step 3	Use the numeric keypad to enter the set upper voltage limit.

4.4.7 [Lower voltage limit]

■To set the lower voltage limit

Step 1	Press the [Meas] shortcut key, and select [Voltage Internal Resistance] in the sidebar to enter the < Vol Res Test > page.
Step 2	Use the cursor keys to select the [0.1000V] field.
Step 3	Use the numeric keypad to enter the set voltage lower limit value.

4.5 < **Dc load test** > **page**

No matter what page you are on, just press the [Meas] shortcut key and select [DC Load] in the sidebar to enter the < DC Load Test > page.

4.5.1 [Model]

To set the test mode

Step 1	Press the [Meas] shortcut key, and select [DC Load] in the sidebar to enter the < DC Load Test > page.	
Step 2	Use the cursor keys to select the [Constant Current] field.	
Step 3	Select using f	unction keys.
	functional key	function
	Constant voltage	Set the constant voltage working mode [constant voltage] In constant voltage mode, the electronic load always consumes enough current to keep the input voltage of the load constant. If your tested power supply is[a constant current source], it can work effectively by using the constant voltage Load current! Voltage Load V mode. The maximum number of digits of the input voltage is 5, but the decimal places will be different depending on the value of the maximum protection voltage (V-MAX).

		· · · · · · · · · · · · · · · · · · ·
		When V-MAX > 18V, the decimal point shall be kept to 3 digits;
		When V-MAX \leq 18V, the decimal point shall be kept to 4 digits;
		Set the constant current working mode [constant current]
		In the constant current mode, no matter whether the input voltage
		changes or not, the electronic load always consumes constant
		current.
		If your tested power supply is a constant voltage source, it is
		recommended to use the constant current mode.
		Load
		current
	Constant	
	current	setting value
		Load V input voltage
		The maximum number of digits of the input current is 5, but the
		number of decimal places will be different depending on the value
		of the maximum protection current (I-MAX).
		When I-MAX > 3A, the decimal point shall be kept to 3 digits;
		When I-max \leq 3A, the decimal point shall be kept to 4 digits;
	•	Set the constant power working mode [constant power]
		In the fixed power mode, the electronic load always consumes
		constant power.
		The constant power mode can effectively simulate the constant
		voltage source, but the test of the constant current source may not
		achieve the expected effect. It is more effective to use the constant
		voltage mode for the test of the constant current source.
		According to the formula: $P=V\times I$ if the input voltage V increases
	Fixed	the current I will be forced to decrease to keep the power
	nower	the current i will be forced to decrease to keep the power
	ponei	Load I A current
		E
		V1 V2 V
		constant.
		The maximum number of digits of power input is 5, and the decimal places are
		reserved for 3 digits.
		set the constant resistance working mode [constant resistance]
		In the mode of constant resistance, the electronic load is equivalent
	Constant resistance	to a constant resistance.
		Constant resistance mode can effectively simulate the constant
		voltage source, but the test of constant current source may not
		achieve the expected effect. Because the constant current power
		supply has a feedback circuit with constant holding current, the

load can't work, and the electronic load is always in the process of oscillation adjustment, so it can't be stable. The most effective test method for the constant current source is to use the constant voltage mode. According to the formula: R=V/I, if the input voltage V increases, the
current I will be forced to increase to keep the resistance Load current I The slope represents the set value of the resistance Load V input voltage constant. The maximum number of digits of the input resistor is 5, and the decimal digits are reserved for 3.

4.5.2 [Upper voltage limit setting]

■To set the upper voltage limit

Step 1	Press the [Meas] shortcut key, and select [DC Load] in the sidebar to enter the < DC Load Test > page.
Step 2	Use the cursor keys to select the [30.000V] field.
Step 3	Use the numeric keypad to enter the set upper voltage limit.

4.5.3 [Current upper limit setting]

■To set the upper current limit

Step 1	Press the [Meas] shortcut key, and select [DC Load] in the sidebar to enter the < DC Load Test > page.
Step 2	Use the cursor keys to select the [15.000A] field.
Step 3	Use the numeric keypad to enter the set current upper limit value.

4.5.4 [Upper power limit setting]

■To set the upper power limit

Step 1	Press the [Meas] shortcut key, and select [DC Load] in the sidebar to enter the < DC Load Test > page.
Step 2	Use the cursor keys to select the [100.0W] field.
Step 3	Use the numeric keypad to enter the set upper power limit.

4.5.5 [Parameter setting]

■To set parameter settings

Step 1	Press the [Meas] shortcut key, and select [DC Load] in the sidebar to enter the < DC Load Test >
	page.
Step 2	Use the cursor keys to select the [0.1000A] field.
Step 3	Use the numeric keypad to input the set current value.

4.6 < **DCPower Test** > **Page**

No matter what page you are on, just press the [Meas] shmortcut key and select [DC Power] in the sidebar to enter the < DC Power Test > page.

4.6.1 [Voltage setting]

■To set the voltage

Step 1	Press the [Meas] shortcut key, and select [DC Power Supply] in the sidebar to enter the < DC Power Test > page.
Step 2	Use the cursor keys to select the [9.000V] field.
Step 3	Use the numeric keypad to enter the set voltage value. Voltage range: 0.001~30.000V

4.6.2 [Current setting]

■To set the current

Step 1	Press the [Meas] shortcut key, and select [DC Power Supply] in the sidebar to enter the < DC Power Test > page.
Step 2	Use the cursor keys to select the [0.2000A] field.
Step 3	Use the numeric keypad to enter the set current upper limit value. Current range: 0.0001~5.000A

4.7 < Battery capacity test > page

No matter what page you are on, just press the [Meas] shortcut key and select [Battery Capacity] in the sidebar to enter the < Battery Capacity > page.

Picture 4-7 < Battery capacity > Page

4.7.1 [Document]

To set up a file

Step 1	Press the [Meas] shortcut key and select [Battery Capacity] in the sidebar to enter the < Battery Capacity Test > page.		
Step 2	Use the curso	r keys to select the [File 2] field.	
Step 3	Select using function keys.		
	functional key	Function	
	File 1	Select parameter setting file 1.	
	File 2	Select parameter setting file 1.	
	File 10	Select parameter setting file 10	

4.7.2 [Set up]

■ To set the file configuration

Step 1	Step 1 Press the [Meas] shortcut key and select [Battery Capacity] in the sidebar to enter the < Battery Capacity Test > page.	
Step 2	Use the curs	or keys to select the [Configuration] field.
Step 3	Select using function keys.	
	Functional key	Function
	Deploy	Enter the file parameter setting page.
	Reset	The current file is restored to factory settings.

4.8 **< File > page**

No matter what page you are on, just press the Meas shortcut key, select Battery Capacity in the sidebar, and enter the < Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and press the function key [Configuration] to enter the < File Configuration > page.

Picture 4-8 < File configuration	>Page				
<pre><file conf<="" pre=""></file></pre>	IG>			6 3	
BAT TYPE:	Li				
BAT VOL:	0.010 V	BAT CAP:	0.001 Ah		\equiv
RCV:	0.010 V	RCC:	0.0001 A		
DCC:	0.0001 A	COV:	0.010 V	on -	
PRECHARGE:	OFF	CYCLE:	1	(5
DELAY:	100 s	:003	0.100 A	34	
				÷	_
				1	
				<u></u>	5
		DETUD			-
v 10:33 🖪 🖫		RETUR	M KEY LUCK	100	

4.8.1 [Battery type]

Battery type setting.

To set the battery type

Step 1	Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the < Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and press the function key [Configuration] to enter the < File Configuration > page.		
Step 2	Use the cursor keys	to select the [Lithium Battery] field.	
Step 3	Select using funct	ion keys.	
	Functional key	Function	
	Lithium Battery	Test battery type and select lithium battery.	
	Nickel-Hydrogen battery	Choose Ni-MH battery for testing battery type.	
	Nickel Cadmium batteries	Choose Ni-Cr battery for testing battery type.	
	Lead-acid cell	Select lead-acid battery for testing battery type.	

4.8.2 [Battery voltage]

Battery voltage setting. ■ To set the battery voltage

o set the ballery	Voltage
Step 1	Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the < Battery Capacity Test > page.
	[Configuration] to enter the < File Configuration > page.
	L
Step 2	Use the cursor keys to select the [Battery Voltage] field.
Step 3	Use the numeric keypad to input the set voltage value, and then press [Ente] to finish setting. Voltage range: 0.0~30.000V

4.8.3 [Battery capacity]

Battery capacity setting.

■To set the battery capacity

Step 1	Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the < Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and press the function key [Configuration] to enter the < File Configuration > page.
Step 2	Use the cursor keys to select the [Battery Capacity] field.
Step 3	Use the numeric keypad to input the set voltage value, and then press [Enter] to finish setting. Voltage range: 0.001~9999.9AH

4.8.4 [Charging voltage]

Charging voltage setting.

Setting the charging voltage

 <u> </u>	
	Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the <
Step 1	Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and
	press the function key [Configuration] to enter the < File Configuration > page.
Step 2	Use the cursor keys to select the [Charging Voltage] field.
Step 3	Use the numeric keypad to input the set voltage value, and then press [Ente] to finish setting. Voltage range: 0.0~30.000V

4.8.5 [Charging current]

Charging current setting.

To set the charging current

······································	
Step 1	Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the < Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and press the function key [Configuration] to enter the < File Configuration > page.
Step 2	Use the cursor keys to select the [Charging Current] field.
Step 3	Use the numeric keypad to input the set voltage value, and then press [Ente] to finish setting. Voltage range: 0.0~5.1000A

4.8.6 [Discharging current]

Discharge current setting.

■Setting the discharge current

5	5
Step 1	Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the < Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and press the function key [Configuration] to enter the < File Configuration > page.
Step 2	Use the cursor keys to select the [Discharge Current] field.
Step 3	Use the numeric keypad to input the set voltage value, and then press [Ente] to finish setting. Voltage range: 0.0~15.000A

4.8.7 [Cutoff voltage]

Cut-off voltage setting.

To set the cut-off voltage

Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the <
Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and press the function key [Configuration] to enter the < File Configuration > page
press the function key [comiguration] to enter the strike comiguration - page.
Use the cursor keys to select the [cut-off voltage] field.
Use the numeric keypad to input the set voltage value, and then press [Ente] to finish setting. Voltage range: 0.0~30.000V

4.8.8 [Predischarge]

Pre-discharge mode setting.

To set the pre-discharge mode

Step 1	Press the [Meas] shortcut key, select [Battery Capacity] in the sidebar, and enter the < Battery Capacity Test > page. Use the cursor keys to select the [Configuration] field, and press the function key [Configuration] to enter the < File Configuration > page.		
Step 2	Use the curs	Use the cursor keys to select the [Pre-discharge] field.	
Step 3	Select using function keys.		
	Functional		
	key		
	Close When closing the battery capacity test, discharge the battery first.		

Open When the battery capacity test is turned on, discharge the battery first.

[Cycles] 4.8.9

Cycle number setting. To set the number of cycles

~ ~				
	Step 1	Press the [Setup] shortcut key to enter the < function setting > page, select [leak test] as the test mode, and press the [Meas] shortcut key to enter the < leak test > page.		
	Step 2	Use the cursor keys to select the [Cycle Times] field.		
	Step 3	Select using f	unction keys.	
	Functional Function key		Function	
		Enter the cycle value.	Set the number of cycles of capacitance test.	

5. [Setup] Setting display

You will learn all the setup functions in this chapter.:

- < set display > page
- < U disk settings > page

5.1 < Set up> page

At any time, just press the [Setup] shortcut key to enter the < Function Settings > page.

cture 5-1 < Set up > pa	ge			101
RES RANGE:	[3]AUTO	VOL RANGE:	[1]AUTO	RES
RES HIGH:	1.0000 Ω	RES LOW:	1.0000 mΩ	
VOL HIGH:	10.000 V	VOL LOW:	0.1000V	DC
LOAD MODE:	CC	LOAD VOL:	30.000V	LOAD
LOAD CUR:	2.0000 A	LOAD POWER:	150.0 W	
POWER VOL:	9.000 V	POWER CUR:	0.2000 A	POWER
TRIG:	INT	BEEP:	OFF	BATTERY
UFS:	OFF	RATE:	SLOW	CAPACITY
				GROUP
89:29 月間	1)	1EAS U-DISK	KEY LOCK	TEST

5.1.1 [Resistance range]

■To set the resistance range

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.	
Step 2	Use the curs	or keys to select the [[0] Auto] field.
Step 3	Select using function keys.	
	functional function	
	Automatic measuring range	The instrument will automatically select the range.
	Manual range The instrument is locked in the current range.	
	Increase+Increase the range number and change the range to lock.Reduce-Decrease the quantum number and change the quantum to lock.	

5.1.2 [Voltage range]

∎To	set	the	voltage	range

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.	
Step 2	Use the curs	or keys to select the [[1] Auto] field.
Step 3 Select using function keys.		function keys.
	functional key	function
	Automatic measuring range	The instrument will automatically select the range.
	Manual range	The instrument is locked in the current range.
	Increase+	Increase the range number and change the range to lock.
	Reduce-	Decrease the quantum number and change the quantum to lock.

5.1.3 [Upper resistance limit]

■To set the upper resistance limit

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [1.0000 Ω] field.
Step 3	Use the numeric keypad to enter the set upper resistance value.

5.1.4 [Lower resistance limit]

■To set the lower resistance limit

Step	Press the [Setup] shortcut key to the < Function Settings > page.
Step	² Use the cursor keys to select the [1.0000 m Ω] field.
Step	3 Use the numeric keypad to enter the set lower resistance value.

5.1.5 [Upper voltage limit]

■ To set the upper resistance limit

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [10.000V] field.
Step 3	Use the numeric keypad to enter the set upper voltage limit.

5.1.6 [Lower voltage limit]

■To set the lower voltage limit

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [0.1000V] field.
Step 3	Use the numeric keypad to enter the set voltage lower limit value.

5.1.7 [Load mode]

To set the test mode

Step 1	Press the [Se	etup] shortcut key to the < Function Settings > page.
Step 2	Use the curs	or keys to select the [Constant Current] field.
Step 3	Select using	function keys.
	Functional	Function
	key	
	Constant voltage	Set the constant voltage working mode [constant voltage]
	Constant current	Set the constant current working mode [constant current]

Fixed	Set the constant power working mode [constant power]
power	
Constant	Set the constant resistance working mode [constant resistance]
resistance	

5.1.8 [Load voltage]

■To set the upper voltage limit

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [30.000V] field.
Step 3	Use the numeric keypad to enter the set upper voltage limit.

5.1.9 [Load current]

■To set the upper current limit

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [15.000A] field.
Step 3	Use the numeric keypad to enter the set current upper limit value.

5.1.10 [Load power]

■To set the upper power limit

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [100.0W] field.
Step 3	Use the numeric keypad to enter the set upper power limit.

5.1.11 [Power supply voltage]

■To set the voltage

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [9.000V] field.
Step 3	Use the numeric keypad to enter the set voltage value.
	Voltage range: 0.001~30.000V

5.1.12 [Supply current]

■To set the current

Step 1	Press the [Setup] shortcut key to the < Function Settings > page.
Step 2	Use the cursor keys to select the [0.2000A] field.
Step 3	Use the numeric keypad to enter the set current upper limit value.
	Current range: 0.0001~5.000A

5.1.13 [Touch off]

■To set he trigger steps.

Step 1	Press the [Setup] shortcut key to enter the main page of < Function Settings >		
Step 2	Use the cursor keys to select the [Internal] field;		
Step 3	Select using function keys.		
	Functional	Function	
	key		
	Inside	Use internal trigger	
	External	Use external trigger	
	Remote	Use remote trigger	

5.1.14 [Buzzing alarm]

■To set the response

Step 1	Press the [Se	etup] shortcut key to enter the main page of < Function Settings >	
Step 2	Use the cursor keys to select the [Close] field;		
Step 3	Select using function keys.		
	Functional	Function	
	key		
	Close	Turn off buzzer.	
	Open	Turn on buzzer.	

5.1.15 [Unqualified stop]

■To set the unqualified stop switch

Step 1	Press the [Se	etup] shortcut key to enter the main page of < Function Settings >
Step 2	Use the cursor keys to select the [Close] field;	
Step 3	Select using function keys.	
	Functional	Function
	key	
	Close	In the comprehensive test process, continue the test in the step where the test of the tested object fails.
	Open	During the comprehensive test, stop the test in the step where the test of the tested object fails.

5.1.16 [Rate]

■To set the sampling rate

Step 1	Press the [Setup] shortcut key to enter the main page of < Function Settings >		
Step 2	Use the cursor keys to select the [Slow Speed] field;		
Step 3	Select using function keys.		
	Functional	Function	
	key		
	Low speed	Set the sampling rate of voltage internal resistance test function to slow.	
	Fast	Set the sampling rate of voltage internal resistance test function to fast.	

5.2 < U disk settings > page

6.System configuration

You will learn about the system configuration of the instrument in this chapter.:

- System configuration page
- System information page
- Service page

6.1 < SYSTEM CONFIGURATION > page

At any time, just press the [SYSTEM] shortcut key to enter the < SYSTEM CONFIGURATION > page. Picture 6-1 < SYSTEM CONFIGURATION > page

6.1.1 [LANGUAGE]

■ Setting language steps:

Step 1	Press the [s	Press the [system] shortcut key to enter the < system configuration > page		
Step 2	Use the cur	Use the cursor keys to select the [Language] field.		
Step 3	Use the side	Use the sidebar function keys to set the language.		
	Functional key	Function		
	Chinese (CHS)	Set the instrument as Chinese operation interface.		
	ENGLISH	Set the instrument as English operation interface.		
6.1.2 [DATE] [TIME]

■Set date step:

Step 1	Press the [system] shortcut key to enter the < system configuration > page				
Step 2	Use the cursor keys to select the [Date] field.				
Step 3	Use the sidebar function keys to set the date.				
	Functional	Functional Function			
	key				
	Years+	;+ +1 year			
	Year-	-1 year			
	Yue+	+January			
	Month-	MonthJanuary			
	Day+ +1 day				
	Day-	-1st			

■Set time step:

Step 1	Press the [system] shortcut key to enter the < system configuration > page			
Step 2	Use the cursor keys to select the [Time] field.			
Step 3	Use the side	ebar function keys to set the time.		
	Functional	Function		
	key			
	Time+	Time+ +1 hour		
	When-	When1 hour		
	Fen+	Fen+ +1 minute		
	Divide1 minute			
	Second+ +1 second			
	Second-	Second1 second.		

Note: If the internal battery power is insufficient, the clock will stop running, and a new battery needs to be replaced.

6.1.3 [ACCOUNT] [PASSWORD]

The instrument has two modes to choose from.:

- Administrator–except the [System Services] page, other functions are open to administrators.
- User–users can operate other functions except [System Services] page.

■Setting account number steps:

Step 1	Press the [system] shortcut key to enter the < system configuration > page			
Step 2	Use the cursor	Use the cursor keys to select the [account number] field.		
Step 3	Use the sidebar function keys to change the account number.			
	Functional	Functional Function		
	key	key		
	administrator Except the < System Services > page, other functions are open to administrators.			
	user	Except the [System Services] page, users of other functions can operate, and the set data will not be saved.		

Setting administrat	or password s	steps:			
Step 1	Press the [system] shortcut key to enter the < system configuration > page				
Step 2	Use the curs	or keys to select the [password] field.			
Step 3	Use the side	bar function keys to set the password.			
	Functional	Functional Function			
	key	key			
	Change	Enter a numeric password of up to 9 digits. The password only			
	password	password includes numbers and symbols. If you forget your password,			
	please call our sales department.				
	Delete	Delete Administrators will not be password protected.			
	password				

6.1.4 [REMOTE]

■To set up remote communication:

Step 1	Press the [system] shortcut key to enter the < system configuration > page		
Step 2	Use the cursor keys to select the [Remote Settings] field.		
Step 3	Select using the sidebar function keys.		
	Functional	Functional Function	
	key		
	RS232	RS232 interface	

6.1.5 [STATION NO]

■To set the station number:

Step 1	Press the [system] shortcut key to enter the < system configuration > page				
Step 2	Use the curs	Use the cursor keys to select the [StationNo.] field.			
Step 3	Select using the sidebar function keys.				
	Functional	Functional Function			
	key	cey list of the second s			
	01				
	02				
	20				

In order to facilitate the simultaneous operation of multiple identical instruments, the instruments are allowed to use station number 00 for broadcast communication, and station number 00 is used for communication. The instruments only receive instructions, but cannot return response codes.

6.1.6 [BAUDRATE]

■To set baud rate:

St	tep 1	Press the [system] shortcut key to enter the < system configuration > page		
St	tep 2	Use the cursor keys to select the [Baud Rate] field.		
St	tep 3	Use the sidebar function keys to change the baud rate.		
		Functional Function		
		key		

9600	If you use a communication converter with optocoupler isolation, please use this baud rate.
19200	
38400	
57600	
115200	It is recommended that you use this high-speed baud rate to communicate with the host computer.

6.1.7 [PROTOCOL]

■ Steps to set communication protocol:

Step 1	Press the [system] shortcut key to enter the < system configuration > page				
Step 2	Use the cursor keys to select the [Communication Protocol] field.				
Step 3	Use the sidebar function keys to set the language.				
	Functional	Functional Function			
	key				
	SCPI				
	MODBUS				

6.1.8 [SHAKEHAND]

■To set instruction handshake:

Step 1	Press the [system] shortcut key to enter the < system configuration > page			
Step 2	Use the cursor keys to select the [instruction handshake] field.			
Step 3	Use the side	bar function keys to set the language.		
	Functional	Functional Function		
	key	key		
	open After the handshake is turned on, all instructions sent host to the instrument will be returned to the host as th and then the data will be returned.			
	close After the handshake is closed, the instructions sent by the host to the instrument will be processed immediately.			

6.1.9 [RESULT SEND]

■To set up the sending of results:

Step 1	Press the [system] shortcut key to enter the < system configuration > page			
Step 2	Use the cursor keys to select the [Send Result] field.			
Step 3	Use the sidebar function keys to set the language.			
	Functional	Functional Function		
	key			
	FETCH Use the command FETCH? Get all measurement data.			
	AUTO	AUTO Automatically sent to the host after each test.		

6.2 <SYSTEM INFORMATION > Page

At any time, just press the [System] shortcut key to enter the < System Configuration > page, and then press the [System Information] function key in the sidebar to enter the < System Information > page. Picture 6-2 System information page

7.Remote control

This chapter provides the following contents

- About RS-232C
- About USB Transfer box
- Select baud rate.
- About SCPI

7.1 About RS-232C

The RS-232 interface that you can connect to a controller (such as PC and PLC) uses the Applent RS-232 DB-9 serial communication line, and the serial port uses the RS-232 standard of sending (TXD), receiving (RXD) and signal ground (GND) lines. Hardware handshake CTS and RTS lines are not used.

Note: Only the DB -9 cable of Applent (not modem) can be used.

The cable length should not exceed 2m.

Picture 7-1 RS-232 connection port on the instrument

Chart 7-1 RS-232 Connector pin

NAME	DB-25	DB-9	NOTE
DCD	8	1	NC
RXD	3	2	Data sending end
TXD	2	3	Data receiving end
DTR	20	4	NC
GND	7	5	Earth wire
DSR	6	6	NC
RTS	4	7	NC
CTS	5	8	NC

Make sure the controller is connected to the AT5800 and uses these settings.

Use of RS-232 interface to transmit data:

8 data bits,

1 stop bit,

There are no parity bits.

7.2 About USB adapter (optional)

Note:

The USB adapter allows the AT5800 to connect to the USB port on your PC.

Please install USB- serial driver and then use USB serial interface. The USB adapter of Applent is ATN2.

Picture 7- 2 USB adapter ATN2

7.3 Select baud rate

Before you can send the RS-232 command to control the AT5800 through the built-in RS-232 controller, you must configure the baud rate of RS-232.

The RS-232 interface of AT5800 uses SCPI language.

Configuration of RS-232

RS-232 is configured as follows:

Data bits: 8-bit

Stop bit: 1-bit

Check digit: none

Set baud rate

- Step 1. Please press the [Setup] key
- Step 2. Use the cursor keys to select [BAUD].
- Step 3. Use function keys to select baud rate.

Functional key	Function
9600	
19200	
38400	
57600	
115200	Recommend

7.4 SCPI language

Note:

Standard Command (SCPI) for Fully Programmable Instruments

AT5800 only supports SCPI language.

8.SCPI Command reference

This chapter contains the reference information of SCPI commands for programming AT5800.

- Command Parser-Know some rules of command parser.
- Command and parameters-writing rules of command line.
- Command reference.

This chapter provides all SCPI commands used by the instrument, through which all functions of the instrument can be completely controlled.

8.1 Command string parsing

The host can send a series of commands to the instrument, and the instrument command parser starts parsing after catching the terminator (n) or the overflow of the input buffer.

For example:

Legitimate command string: AAA:BBB CCC:DDD EEE::FFF

The instrument parser is responsible for parsing and executing all commands, and you must first know the parsing rules before writing the program.

8.1.1 Command parsing rules

- 1. The command parser only parses and responds to ASCII code data.
- 2. SCPI command string must take NL ('\ NL('\n' ASCII 0x0A) as the terminator, and the command parser will only start executing the command string after receiving the terminator or buffer overflow.
- 3. If the instruction handshake is turned on, the command parser immediately sends a character back to the host after receiving it, and the host can only continue to send the next character after receiving this returned character.
- 4. After the command parser parses the error, it immediately terminates parsing, and the current command is invalid.
- 5. After the command parser parses the query command, it terminates the parsing of this command string, and then the string is ignored.
- 6. The parsing of command string by command parser is case-insensitive.
- 7. Command parser supports command abbreviation. See the following sections for abbreviation specifications.

8.1.2 Symbol Convention and Definition

Some symbols are used in this chapter. These symbols are not part of the command tree, but only for better understanding of the command string.

- <> The text in angle brackets indicates the parameters of this command.
- [] The text in square brackets indicates optional commands.
- {} When curly braces contain several parameter items, it means that only one item can be selected.
- () The abbreviated form of the parameter is placed in parentheses.

Abbreviated form of uppercase command.

8.1.3 Command Tree Structure

If SCPI command adopts tree structure, it can be down to three levels (note: the command parser of this instrument can parse any level down), and the highest level here is called subsystem command. Only when a subsystem command is selected, the subordinate command is valid. SCPI uses a colon (:) to separate the high-level command from the low-level command.

Picture 8- 1 Command tree structure

Command and parameters

AAA:BBB 1.234

A command tree consists of commands and [parameters], separated by a space (ASCII: 20H).

For example

COMMAND [PARAMETER]

8.1.4 COMMAND

The command word can be a long command format or an abbreviated form. Using the long format is convenient for engineers to better understand the meaning of the command string. Abbreviated forms are suitable for writing.

8.1.5 PARAMETERS

Command word command, no parameters.

Example: AAA:BBB

Parameters can be in the form of strings, and their abbreviation rules still follow the "command abbreviation rules" in the previous section.

Example: AAA:BBB CCC

- Parameters can be numeric.
 - <integer> integer 123, +123, -123
 - <float> floating-point number
 - 1. <fixfloat>: Floating point number: 1.23, -1.23
 - 2. <Sciloat>: Scientific counting floating point number: 1.23E+4, +1.23e-4

3. <mpfloat>: Floating-point number represented by multiplying power: 1.23k, 1.23M, 1.23G, 1.23u

Chart 8- 1

Abbreviation of magnification						
Numerical value	Magnifying					
	power					
1E18 (EXA)	EX					
1E15 (PETA)	PE					
1E12 (TERA)	Т					
1E9 (GIGA)	G					

MA
К
М
U
N
Р
F
А

Note: The magnification is not case sensitive, and its writing is different from the standard name.

8.1.6 Separator

The instrument parser only accepts the allowed separator, and the other separator command parser will generate an "Invalid separator" error. These delimiters include:

- Semicolon, used to separate two commands.
 - Example: AAA:BBB 100.0; CCC:DDD
- : Colon, used to separate the command tree, or to restart the command tree. *Example*: AAA:BBB:CCC 123.4;:DDD:EEE 567.8
- ? Question mark, used for querying.
 - Example: AAA?
- □ Spaces are used to separate parameters..
 - Example: AAA:BBBD1.234

The host can send a series of commands to the instrument, and the instrument command parser starts parsing after catching the terminator (\n) or the overflow of the input buffer.

EXAMPLE: Legitimate command string:

AAA:BBB CCC;DDD EEE;:FFF

The instrument parser is responsible for parsing and executing all commands, and you must first know the parsing rules before writing the program.

8.2 Command Reference

All commands are interpreted in the order of subsystem commands, and all subsystems are listed

below.

- BASIC Setup subsystem
- VR Voltage internal resistance testing subsystem
- LOAD DC load test subsystem
- POWER DC power supply test subsystem
- CAP Battery capacity testing subsystem
- GROUP Group test subsystem
- ERROR Error subsystem
- DIDN? Query subsystem

8.2.1 BASIC subsystem

BASIC Subsystem is used to set the basic settings of the instrument.

Chart 8- 2	BASIC Command tree	
BASIC	: FUNC	{group,load,power,cap,vr}
Command tree	:RATE	{slow,fast}
	:UFS	{on,off}
	:BEEP	{off,ng,gd}

8.2.1.1 BASIC:FUNC

BASIC:FUNC Used to set test mode.

Command syntax	BASIC:FUNC <group,load,power,cap,vr></group,load,power,cap,vr>
Parameter	group: synthetic test load: DC load test power: DC power test cap: Battery capacity test vr: Voltage internal resistance test
Take for example	<pre>SEND > BASIC:FUNC group<nl>//Set test mode to comprehensive test.</nl></pre>
Query syntax	BASIC: FUNC?
Respond to queries	< group,load,power,cap,vr > <nl></nl>
Take for example	<pre>SEND > BASIC:FUNC?<nl> SEND > group<nl></nl></nl></pre>

8.2.1.2 BASIC:RAET

BASIC:RATE Used to set the sampling rate of voltage internal resistance test mode.

Command syntax	BAISC:RATE <slow,fast></slow,fast>						
Parameter	Slow: Slow acquisition speed Fast: Fast acquisition speed						
	SEND BASIC BATE slow NL> // Set the instrument to collect						
lake for example	slowly.						
Query syntax	BASIC:RATE?						
Respond to queries	<slow,fast><<u>NL></u></slow,fast>						
Take for example	SEND> BASIC:RATE? RECEIVE > slow						

8.2.1.3 BASIC:BEEP

BASIC :BEEP Used to set the response.

Command syntax	BASIC:BEEP <off,ng,gd></off,ng,gd>							
Parameter	Off: Turn off the sound and turn on.							
	IG: Unqualified response							
	GD: Qualified response							
Take for example	SEND> BASIC:BEEP off <nl> //Set the response off.</nl>							
Query syntax	BAISC: BEEP?							
Respond to queries	<off,ng,gd><nl></nl></off,ng,gd>							
Take for example	SEND > BASIC:BEEP?< <u>NL</u> > RECEIVE> off< <u>NL</u> >							

8.2.1.4 BASIC:UFS

BASIC :UFS Used to set the comprehensive test unqualified stop.

Command syntax	BASIC:UFS <on,off></on,off>

parameter	On: Turn on unqualified stop test function.						
	Off: Turn off unqualified stop test function.						
take for example	SEND > BASIC:UFS off <nl> //Set unqualified stop close.</nl>						
Query syntax	BAISC:UFS?						
Respond to queries	<on,off><nl></nl></on,off>						
take for example	SEND > BASIC:UFS?< <u>NL></u> RECEIVE > off< <u>NL></u>						

8.2.2 GROUP subsystem

GROUP The subsystem is used to set the instrument comprehensive test settings.

Chart 8- 3	GROUP Command t	cree
Group	: STATE	{on,off}
Command tree	: FETCH	<pre><int>,<string>,<int>,<float>,<float>,</float></float></int></string></int></pre>
		<float>,<float></float></float>
	:FILE	<pre>{file1,file2,file3,,group10}</pre>
	: TYPE	{li,NiMH,NiCD,SLA}
	:VOL	<float></float>
	:CAP	<float></float>
	: MODE	{cont,step}
	: VNO	<range></range>
	: VMODE	{auto,hold}
	: RNO	<range></range>
	: RMODE	{auto,hold}
	: TOTAL	<int></int>
	:STEP	<int></int>
	:SETO	<step></step>
	:SET1	<pre><step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></pre>
	:SET2	<pre><step>,<rh>,<rl>,<vh>,<vl>,<time></time></vl></vh></rl></rh></step></pre>
	:SET3	<pre><step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></pre>
	:SET4	<step>,<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step>
		<vol>,<steptime>,<ih>,<il></il></ih></steptime></vol>
	:SET5	<pre><step>,<cur>,<time>,<vh>,<vl>,<rh>,<rl></rl></rh></vl></vh></time></cur></step></pre>
	:SET6	<step>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></step>
	:SET7	<step>,<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step>
		<pre><steptime>,<ih>,<il>,,<tl></tl></il></ih></steptime></pre>
	:SET8	<step>,<time>,<vh>,<vl>,,<tl></tl></vl></vh></time></step>
	:SET9	<step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
	:SET	<step>,<float></float></step>

8.2.2.1 GROUP:STATE

GROUP:STATE Used to set the comprehensive test status.

Command syntax	<pre>GROUP:GROUP < on,off ></pre>
Parameter	On: Start the test
	Off: Stop testing
Take for example	<pre>SEND> group:state on<<u>NL></u>// Set the instrument to start testing.</pre>
Query syntax	GROUP: STATE?
Respond to querie s	< on,off > <nl></nl>
Take for example	SEND> GROUP:STATE?< <u>NL></u> RECEIVE> on< <u>NL></u>

8.2.2.2 GROUP:FETCH

Query syntax	GROUP:FETCH?										
Respond to queries	<int>,<func>,<comp>,<float1>,<float2>,<float3>,<float4></float4></float3></float2></float1></comp></func></int>										
Parameter	Int	>0Time = number of steps 0=空									
		NL		Empty							
		ACT		Battery activ	ation test						
		VR		Voltage inter	nal resistar	nce test					
		CRG		Battery charg	ging test						
	Func	OC		Battery over	charge test						
	- 4110	DR		DC internal r	esistance t	est					
		DC		Battery disch	arge test						
		ODC		Battery over-discharge test							
		SHT		Short circuit test							
		RST		Battery recov	Battery recovery test						
	Comp	Currer	nt step d	comparator	omparator status (0: pass, 1: fail)						
		NL	ACT	VR	CRG	OC	DR	DC	ODC	SHT	RST
	Float1	empty	voltage	voltage	voltag e	volta ge	voltage	volta ge	volta ge	volta ge	volta ge
	Float2	empty	electric current	electric resistance	electri c current	electr ic curre nt	electric current	electr ic curre nt	electr ic curre nt	electr ic curre nt	electr ic curre nt
	Float3	empty	at fixed time	at fixed time	at fixed time	at fixed time	electric resistan ce	at fixed time	at fixed time	at fixed time	at fixed time
	Flaot4	empty	empty	empty	empty	empt y	at fixed time	empt y	empt y	empt y	empt y
Example	SEND> GR	OUP:FE1	CH? <nl></nl>								
•	RECEIVE>	0, AC	T,0,1.0e	+01,5.0e-0	1,5.0e-	01,0 <u><n< u=""></n<></u>	<u>.></u>				

GROUP:FETCH Used to obtain comprehensive test results.

8.2.2.3 GROUP:FILE

GROUP:FILE Used to set the comprehensive test group number.

Command syntax	<pre>GROUP:FILE < group1,group2,group3,,group10 ></pre>	
Parameter	Group1: Group 1	
	Group2: Group 2	
	Group3: Group 10	
Take for example	<pre>SEND> group:file group1</pre> // Set the comprehensive test group as the first group.	
Query syntax	GROUP: FILE?	
Respond to queries	< group,group2,group3,,group10 >< <u>NL></u>	
Take for example	SEND> GROUP:FILE? RECEIVE> group1	

8.2.2.4 GROUP:TYPE

GROUP:TYPE Used to set the comprehensive test battery type.

Command syntax	<pre>GROUP:TYPE < Li,NiMH,NiCD,SLA ></pre>
parameter	Li: Lithium battery

	NiMH: Nickel-hydrogen battery
	NiCD: Nickel cadmium batteries
	SLA: Lead-acid cell
Example	SEND> group:type Li <nl>//Set the comprehensive test battery</nl>
	type as lithium battery.
Query syntax	GROUP: TYPE?
Respond to queries	< Li,NiMH,NiCD,SLA > <nl></nl>
Take for example	SEND> GROUP: TYPE?
	RECEIVE> Li< <u>NL></u>

8.2.2.5 GROUP:VOL

GROUP:VOL Used to set the nominal voltage of comprehensive test.		
Command syntax	GROUP:VOL < float >	
Parameter	float: Test the nominal voltage value of the battery	
Take for example	<pre>SEND> group:vol 10.000// Set the battery nominal voltage to 10.000V</pre>	
Query syntax	GROUP: VOL?	
Respond to queries	< float > <nl></nl>	
Take for example	SEND> GROUP: VOL? <nl></nl>	
	SEND> 1.0e+01 <nl></nl>	

8.2.2.6 GROUP:CAP

GROUP:CAP Used to set the	nominal capacity of	f comprehensive test.
---------------------------	---------------------	-----------------------

Command syntax	GROUP:CAP < float >
Parameter	Float: Test the nominal capacity of the battery.
Take for example	<pre>SEND> group:cap 0.1000<nl>//Set the nominal capacity of the battery to 0.1AH</nl></pre>
Query syntax	GROUP: CAP?
Respond to queries	< float > <nl></nl>
Take for example	SEND> GROUP:CAP?< <u>NL></u> RECEIVE> 1.0e-01< <u>NL></u>

8.2.2.7 GROUP:MODE

GROUP:MODE Used to set	comprehensive test mode.
------------------------	--------------------------

Command syntax	GROUP:MODE < cont,step >
Parameter	cont: Continuous test mode
	step: Single-step test mode
Take for example	SEND> group:mode cont< <u>NL></u> // Set the group test mode to continuous mode.
Query syntax	GROUP: MODE?
Respond to queries	< cont, step > <nl></nl>
Take for example	SEND> GROUP: MODE? < <u>NL></u> RECEIVE> cont< <u>NL></u>

8.2.2.8 GROUP:VNO

GROUP:VNO Used to set the comprehensive test voltage range number

Command syntax GROUP:VNO < int >

Parameter	int: Test the voltage range number comprehensively, and
	automatically switch the voltage range mode to HOLD mode after setting the range number.
Take for example	SEND> group:vno 1 <nl>// Set the voltage range to 1 range.</nl>
Query syntax	GROUP: VNO?
Respond to queries	< int > <nl></nl>
Take for example	SEND> GROUP:VNO? <nl> RECEIVE> 1<nl></nl></nl>

8.2.2.9 GROUP:VMODE

GROUP:VMODE Used to set the comprehensive test voltage range mode.		
Command syntax	GROUP:VMODE < auto, hold >	
Parameter	auto: Comprehensive test voltage range is AUTO mode.	
	hold: Comprehensive test voltage range is HOLD mode.	
Take for example	<pre>SEND> group:vmode auto<<u>NL></u>// Set the automatic voltage range mode.</pre>	
Query syntax	GROUP: VMODE?	
Respond to queries	< auto, hold >< <u>NL></u>	
Take for example	SEND> GROUP:VMODE? <nl> RECEIVE> auto<nl></nl></nl>	

8.2.2.10 GROUP:RNO

GROUP:RNO Used to set the comprehensive test resistance range number.

Command syntax	GROUP:RNO < int >
Parameter	int: Test the resistance range number comprehensively. After setting the range number, the resistance range mode will automatically switch to HOLD mode.
Take for example	SEND> group:rno 1 <nl>//Set the resistance range to 1 range.</nl>
Query syntax	GROUP: RNO?
Respond to queries	< int > <nl></nl>
Take for example	SEND> GROUP:RNO?< <u>NL></u> RECEIVE> 1< <u>NL></u>

8.2.2.11 GROUP:RMODE

GROUP:RMODE Used to set the comprehensive test resistance range mode.

Command syntax	GROUP:RMODE < auto, hold >
Parameter	auto: The measuring range of comprehensive resistance is AUTO mode.
	mode.
Take for example	<pre>SEND> group:rmode auto</pre> // Set the resistance range automatic mode.
Query syntax	GROUP: RMODE?
Respond to queries	< auto, hold > <nl></nl>
Take for example	SEND> GROUP:RMODE?< <u>NL></u> RECEIVE> auto< <u>NL></u>

8.2.2.12 GROUP:TOTAL

GROUP:TOTAL Used to set the total test steps of comprehensive test.

Command syntax	GROUP:TOTAL < int >
Parameter	int: Total test steps of comprehensive test
Take for example	SEND> group:total 9< <u>NL></u> //Set the total number of comprehensive test steps to 9.
Query syntax	GROUP: TOTAL?
Respond to queries	< int > <nl></nl>
Ttake for example	SEND> GROUP:TOTAL?< <u>NL></u> RECEIVE> 9.0e+00< <u>NL></u>

8.2.2.13 GROUP:STEP

GROUP:STEP Used to set the current step of comprehensive test.		
Command syntax	GROUP:STEP < int >	
parameter	int: Set the current step of comprehensive test.	
Take for example	SEND> group:step 1< <u>NL></u> //Set the current step of comprehensive test to 1.	
Query syntax	GROUP: STEP?	
Respond to queries	< int > <nl></nl>	
Take for example	SEND> GROUP:STEP? <nl> RECEIVE> 1.0e+00<nl></nl></nl>	

8.2.2.14 GROUP:SET0

GROUP:SETO Parameter used to set the comprehensive test function to [empty]

Command syntax	GROUP:SET0 < step >
Parameter	step: The number of steps to be configured for comprehensive testing.
Take for example	SEND> group:set0 1 <nl>// Set step 1 of comprehensive test to NULL.</nl>

8.2.2.15 GROUP:SET1

GROUP:SET1 Parameters used to set the comprehensive test function as [Battery Activation]

Command syntax	<pre>GROUP:SET1 < step, vol,cur,time,vh,vl ></pre>
Parameter	step: The number of steps to be configured for comprehensive testing.
	cur: Activation current value time: TestTime
	vh: Comparator voltage upper limit vl: Comparator voltage lower limit
Take for example	SEND> group:set1 2,9.000, 0.1000,10.0,8.800,8.5000 <nl> //Set the comprehensive test step 2 as battery activation, with the activation voltage of 9.000V, the activation current of 0.1000A, the test time of 10 seconds, the upper voltage limit of the comparator of 8.8V and the lower voltage limit of 8.5V.</nl>

8.2.2.16 GROUP:SET2

GROUP:SET2 Used to set the comprehensive test function as [voltage internal resistance] parameter.Command syntaxGROUP:SET2 < step, rh,rl,vh,vl,time >

Parameter	step: The number of steps to be configured for comprehensive testing.
	rh: Comparator resistance upper limit
	rl: Comparator resistance lower limit
	vh: Comparator voltage upper limit
	vl: Comparator voltage lower limit
	time: TestTime
Take for example	SEND> group:set2 3,1.0000, 0.1000,8.800,8.5000, 10.0 <nl> // Set the comprehensive test step 3 as the voltage internal resistance, the upper resistance 1.000Ω, the lower resistance 0.1000Ω, the upper voltage of the comparator 8.8V, the lower voltage 8.5V, and the test time 10.0 seconds.</nl>

8.2.2.17 GROUP:SET3

GROUP:SET3 Parameters used to set the comprehensive test function as [Charging Test]

Command syntax	<pre>GROUP:SET3 < step, vol,cur,time,vh,vl ></pre>
Parameter	step: The number of steps to be configured for comprehensive testing.
	vol: Charging voltage valuecur
	time: TestTime
	vh: Comparator voltage upper limit
	vl: Comparator voltage lower limit
Take for example	<pre>SEND> group:set3 4,9.000, 0.1000,10.0,8.800,8.5000<nl> // Set the comprehensive test step 4 as battery activation, charging voltage 9.000V, charging current 0.1000A, test time 10 seconds, comparator voltage upper limit 8.8V, voltage lower limit 8.5V.</nl></pre>

8.2.2.18 GROUP:SET4

GROUP:SET4 Parameters used to set the comprehensive test function as [overcharge test]

Command syntax	GROUP:SET4
	< step, startcur, stopcur, stepcur, vol, steptime, ih, il >
Parameter	<pre>step: The number of steps to be configured for comprehensive testing. startcur: Initial current stopcur: Cut-off current stepcur: Stepping current vol: Magnitude of voltage</pre>
	steptime: Step time ih: Comparator current upper limit il: Comparator current lower limit
Example	SEND> group:set4 5, 1.0, 2.0,0.1,1.0, 1.7,1.6< <u>NL></u> //Set comprehensive test step 5 as overcharge test, with initial current of 1.0A, end current of 2.0A, step current of 0.1A, step time of 1.0 seconds, upper limit of protection current of 1.7A and lower limit of protection current of 1.6A.

8.2.2.19 GROUP:SET5

GROUP:SET5 Used to set the parameter of [DC internal resistance] for comprehensive test function.

Command syntax	<pre>GROUP:SET5 < step, cur,time,vh,vl,rh,rl ></pre>
Parameter	<pre>step: The number of steps to be configured for comprehensive testing. Cur: On-load current of battery Time: battery loading time Vh: Upper limit of comparator voltage V1: Lower limit of comparator voltage Rh: upper limit of comparator resistance Rl: lower limit of comparator resistance</pre>
Take for example	SEND> group:set5 6,1.0, 1.0,8.800,8.5000,1.0,0.7 <nl> //Set the comprehensive test step 6 as DC internal resistance, on-load current of 1.0A, on-load time of 1.0 seconds, upper voltage limit of 8.8V, lower voltage limit of 8.5V, upper resistance limit of 1.0Q and lower resistance limit of 0.7Q.</nl>

8.2.2.20 GROUP:SET6

GROUP:SET6 Parameters used to set the comprehensive test function as [discharge test]

Command syntax	<pre>GROUP:SET6 < step, cur,time,vh,vl ></pre>
Parameter	step: The number of steps to be configured for comprehensive testing.
	cur: Load current
	time: TestTime
	vh: Comparator voltage upper limit
	vl: Comparator voltage lower limit
Take for example	SEND> group:set6 7, 1.0, 10.0,8.1,8.0 // Set comprehensive test step 7 as discharge test, with load current of 1.0A, test time of 10.0 seconds, upper voltage limit of 8.1V and lower voltage limit of 8.0V.

8.2.2.21 GROUP:SET7

GROUP:SET7 Parameters used to set the comprehensive test function as [Overdischarge Test]

Command syntax	GROUP:SET7
	< step, startcur, stopcur, stepcur, steptime, ih, il, th, tl >
Parameter	step: The number of steps to be configured for comprehensive testing.
	startcur: Initial current
	stopcur: Cut-off current
	stepcur: Stepping current
	steptime: Step time
	ih: Comparator current upper limit
	il: Comparator current lower limit
	th: Comparator time upper limit
	tl: Comparator time lower limit
Take for example	<pre>SEND> group:set7 8, 1.0, 2.0,0.1,0.001, 1.7,1.6, <<u>NL></u> //Set comprehensive test step 8 as overcharge test, with initial current of 1.0A, end current of 2.0A, step current of 0.1A, step</pre>

time of 1ms, upper limit of protection current of 1.7A, lower limit of protection current of 1.6A, upper limit of protection time of 10.0ms and lower limit of protection time of 8.0ms.

8.2.2.22 GROUP:SET8

GROUP:SET8 Parameters used to set the comprehensive test function as [short circuit test]

Command syntax	<pre>GROUP:SET8 < step, time,vh,vl,th,tl ></pre>
Parameter	step: The number of steps to be configured for comprehensive testing.
	time: TestTime
	vh: Comparator voltage upper limit
	vl: Comparator voltage lower limit
	th: Comparator time upper limit
	tl: Comparator time lower limit
Take for example	<pre>SEND> group:set8 9, 0.001, 0.1,0.001,0.0005, 0.0001<nl> //Set comprehensive test step 9 as short-circuit test, with test time of 1.0ms, upper limit of protection voltage of 0.1V, lower limit of protection voltage of 0.001V, upper limit of protection time of 0.5ms and lower limit of protection time of 0.1ms.</nl></pre>

8.2.2.23 GROUP:SET9

GROUP:SET9 Parameters used to set the comprehensive test function as [Recovery Test]

Command syntax	GROUP: SET9
	< step, vol,cur,time,vh,vl >
Parameter	step: The number of steps to be configured for comprehensive testing.
	vol: charging voltage
	cur: Load current
	time: TestTime
	vh: Comparator voltage upper limit
	vl: Comparator voltage lower limit
Take for example	SEND> group:set9 10, 9.0, 1.0,10.0,8.8, 8.7 <nl> //Set comprehensive test step 10 as overcharge test, charging voltage 9.0V, charging current 1.0A, charging time 10s, upper voltage limit 8.8V and lower voltage limit 8.7v.</nl>

8.2.2.24 GROUP:SET?

GROUP:SET? Get the parameters of each step of comprehensive test.

Query syntax	GROUP:SET? <step></step>
Respond to queries	<pre>Empty: <step>,"null"</step></pre>
	Activate battery: <step>,"act",<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
	Voltage internal resistance:
	<pre><step>,"vr",<rh>,<rl>,<vh>,<vl>,<time></time></vl></vh></rl></rh></step></pre>
	Charging test: <step>,"chg",<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
	<pre>Overcharge test: <step>,"oc",<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step></pre>

	<steptime>,<ih>,<il></il></ih></steptime>
	DC internal resistance:
	<pre><step>,"dr",<cur>,<time>,<vh>,<vl>,<rh>,<rl></rl></rh></vl></vh></time></cur></step></pre>
	<pre>Discharge test: <step>,"dcg",<cur>,<time>,<vh>,<vl></vl></vh></time></cur></step></pre>
	Overdischarge test:
	<pre><step>,"odc",<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step></pre>
	Short circuit test: <step>, "sht", <time>, <vh>, <vl>, , <tl></tl></vl></vh></time></step>
	Recovery test: <step>,"rst",<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
Take for example	SEND> GROUP:SET? 2
	RECEIVE> 2,act,9.0e+00,1.0e+00,1.0e+01,8.8e+00,8.7e+00

8.2.3 VR subsystem

The voltage internal resistance subsystem is used to set the instrument VOLRES settings.

```
Chart 8- 4 VR Command tree
```

VR	: FETCH	<res>,<vol></vol></res>
Command tree	: VNO	<range></range>
	: VMODE	<auto,hold></auto,hold>
	: RNO	<range></range>
	: RMODE	<auto,hold></auto,hold>
	:RLIMIT	<rhigh>,<rlow></rlow></rhigh>
	:VLIMIT	<vhigh>,<vlow></vlow></vhigh>

8.2.3.1 VR:FETCH

VR:FETCH Used to obtain the voltage internal resistance test result.

Query syntax	VR:FETCH?	
Respond to queries	<res>,<vol></vol></res>	
Take for example	<pre>send> VR:FETCH?<<u>NL></u> RECEIVE> 1.0e-01,9.0e+00<<u>NL></u></pre>	

8.2.3.2 VR:VNO

VR:VNO Used to set the voltage range number of voltage internal resistance test.

Command syntax	VR:VNO < int >
Parameter	Int: voltage range number. After setting the range number, the voltage range mode will be automatically switched to HOLD mode.
Take for example	发送> VR:VNO 1 <nl> // Set the voltage range number to 1.</nl>
Query syntax	VR:VNO?
Respond to queries	< int >< <u>NL</u> >
Take for example	SEND> VR:VNO?< <u>NL></u> RECEIVE> 1< <u>NL</u> >

8.2.3.3 VR:VMODE

VR:VMODE Used to set the voltage range mode for voltage internal resistance test.

Command syntax	VR:VMODE < auto, hold >
Parameter	auto: The voltage range is AUTO mode.
	hold: The voltage range is HOLD mode.
Take for example	<pre>send> VR:VMODE auto</pre> //Set the voltage range to automatic mode.
Query syntax	VR:VMODE?

Respond to queries	< auto, hold > <nl></nl>	
Take for example	SEND> VR:VMODE? <nl></nl>	
	RECEIVE> auto <nl></nl>	

8.2.3.4 VR:RNO

VR:RNO Used to set the resistance range number of voltage internal resistance test.

Command syntax	VR:RNO < int >
Parameter	int: Resistance range number, after setting the range number,
	the resistance range mode is automatically switched to HOLD mode.
Take for example	SEND> VR:RNO 1 <nl> // Set the resistance range number to 1.</nl>
Query syntax	VR:RNO?
Respond to queries	< int > <nl></nl>
Take for example	SEND> VR:RNO?< <u>NL</u> >
	RECEIVE> 1 <nl></nl>

8.2.3.5 VR:RMODE

VR:RMODE Used to set the resistance range mode for voltage internal resistance test.

Command syntax	VR:VMODE < auto, hold >	
Parameter	auto: The resistance range is AUTO mode	
	hold: The resistance range is in HOLD mode.	
Take for example	SEND> VR:RMODE auto< <u>NL></u> // Set the resistance range to automatic mode.	
Query syntax	VR:RMODE?	
Respond to queries	< auto, hold > <nl></nl>	
Take for example	SEND> VR:RMODE? <nl> RECEIVE> auto<nl></nl></nl>	

8.2.3.6 VR:RLIMIT

VR:RLIMIT Used to set the upper and lower resistance limits of voltage internal resistance.

Command syntax	VR:RLIMIT < high >,< low >
Parameter	High: Upper resistance limit
	low: Lower resistance limit
Take for example	SEND> VR:RLIMIT 1.0,0.9 <nl> // Set the upper limit of resistance</nl>
	to 1.0 Ω and the lower limit to 0.9 Ω .
Query syntax	VR:RLIMIT?
Respond to queries	< high >,< low > <nl></nl>
Take for example	SEND> VR:RLIMIT?< <u>NL></u> RECEIVE> 1.0e+00,9.0e-01< <u>NL></u>

8.2.3.7 VR:VLIMIT

vR:VLIMIT Used to set the upper and lower voltage limits of voltage internal resistance.

Command syntax	VR:VLIMIT < high >,< low >
Parameter	High: Upper voltage limit
	low: Lower voltage limit
Take for example	SEND> VR:VLIMIT 9.0,8.5 <nl> // Set the upper voltage limit to 9.0V and the lower voltage limit to 8.5V</nl>
Query syntax	VR:VLIMIT?

Respond to queries	< high >,< low >< <u>NL</u> >	
Take for example	SEND> VR:VLIMIT? <nl></nl>	
	RECEIVE> 9.0e+00,8.5e+00 <nl></nl>	

8.2.4 DCLOAD subsystem

DC LOAD The subsystem is used to set the DC load test settings of the instrument.

Chart 8-5 DCLOAD Command	tree
--------------------------	------

Load	: STATE	<on,off></on,off>
Command tree	: FETCH	<vol>,<cur>,<power>,<res></res></power></cur></vol>
	: MODE	<cv,cc,cp,cr></cv,cc,cp,cr>
	:LIMIT	<vmax>,<imax>,<pmax></pmax></imax></vmax>
	: VALUE	<mode>,<float></float></mode>

8.2.4.1 LOAD:STATE

LOAD:STATE Used to set DC load test status.

Command syntax	LOAD:STATE < on,off >
Parameter	On: Start the test
	Off: Stop testing
Take for example	SEND> load:state on< <u>NL></u> //Set the instrument to start testing.
Query syntax	LOAD: STATE?
Respond to queries	< on,off > <nl></nl>
Take for example	SEND> LOAD: STATE?< <u>NL></u>
	RECEIVE> on< <u>NL></u>

8.2.4.2 LOAD:FETCH

LOAD:FETCH Used to obtain DC load test results.		
Command syntax	LOAD: FETCH?	
Respond to queries	<vol>,<cur>,<power>,<res></res></power></cur></vol>	
Take for example	SEND> LOAD: FETCH?< <u>NL</u> >	
-	RECEIVE> 8.8e+00,5.0e-01,4.4e+00,1.76e+01 <nl></nl>	

8.2.4.3 LOAD:MODE

LOAD.MODE Used to set the DC load test mode	LOAD:MODE	Used to set the DC load test mode.
---	-----------	------------------------------------

Command syntax	LOAD:MODE < cv,cc,cpc,cr >
Parameter	cv: Constant voltage
	cc: Constant current
	cp: Fixed power
	cr: Constant resistance
Take for example	<pre>SEND > LOAD:MODE cc<nl> // Set the load mode to constant current mode.</nl></pre>
Query syntax	LOAD: MODE?
Respond to queries	< cv,cc,cp,cr > <nl></nl>
Take for example	SEND > LOAD: MODE? < <u>NL</u> >
	RECEIVE > cc <nl></nl>

8.2.4.4 LOAD:LIMIT

OAD:LIMIT Used to set the comparator date of DC load.		
Command syntax	LOAD:LIMIT < vmax >,< imax >, <pmax></pmax>	
Parameter	vmax: Upper voltage limit	
	imax: Current upper limit	
	pmax: Upper power limit	
Take for example	<pre>SEND > LOAD:LIMIT 30.0,15.0,100.0<nl> // Set the voltage limit to 30.0V, current limit to 15.0A and power limit to 100.0W</nl></pre>	
Query syntax	LOAD:LIMIT?	
Respond to queries	< vmax >,< imax >,< pmax > <nl></nl>	
Take for example	<pre>SEND > LOAD:LIMIT?</pre> RECEIVE > 3.0e+01,1.5e+01,1.00e+02 NL>	

8.2.4.5 LOAD:VALUE

LOAD:VALUE Used to set the Parameter data of DC load

Command syntax	LOAD:VALUE <mode>,< value ></mode>
Parameter	Mode: Load mode
	Value: Load Parameter
Take for example	SEND > LOAD:VALUE cc,0.6 <nl> // Set the Parameter of constant</nl>
	current mode to 0.6A
Query syntax	LOAD: VALUE?
Respond to querie	< vset >,< iset >,< pset >,< rset > <nl></nl>
Take for example	SEND > LOAD: VALUE? $\langle NL \rangle$
	RECEIVE / 9.00+00,0.00-01,1.00+01,1.00+02 <nl <="" th=""></nl>

8.2.5 DCPOWER Subsystem

DCPOWER The subsystem is used to set the DC power settings of the instrument.

Chart 8-5	DCPOWER Comman	d tree
Power	: STATE	<on,off></on,off>
Command tree	: FETCH	<vol>,<cur>,<power>,<res></res></power></cur></vol>
	: VALUE	<vol>,<cur></cur></vol>

8.2.5.1 POWER:STATE

POWER:STATE Used to set the DC power supply test status.

Command syntax	<pre>POWER:STATE < on,off ></pre>
Parameter	On: Start the test
	Off: Stop testing
Take for example	<pre>SEND > POWER:state on</pre> //Set the instrument.Start the test
Query syntax	POWER: STATE?
Respond to querie	< on,off > <nl></nl>
Take for example	SEND > POWER: STATE?< <u>NL</u> >
	RECEIVE> on <nl></nl>

8.2.5.2 POWER:FETCH

POWER:FETCH Used	to obtain DC power supply test results.
Query syntax	POWER: FETCH?

Respond to querie	<vol>,<cur>,<power>,<res></res></power></cur></vol>
Take for example	SEND > POWER: FETCH? <nl></nl>
	RECEIVE> 8.8e+00,5.0e-01,4.4e+00,1.76e+01 <nl></nl>

8.2.5.3 POWER:VALUE

POWER:VALUE Used to set the Parameter value of DC power supply

Command syntax	POWER:VALUE <vol>,<cur></cur></vol>
Parameter	vol: Output voltage
	cur: Output current
Take for example	SEND > POWER: VALUE 9.0,1.0 <nl> // Set the power supply Parameter</nl>
	to a voltage of 9.0V and a current of 1.0A
Query syntax	POWER: VALUE?
Respond to querie	< vol >,< cur >,< power >,< res > <nl></nl>
Take for example	SEND > POWER: VALUE? $\langle NL \rangle$
	RECEIVE> 9.0e+00,1.0e+00,9.0e+00,9.0e+00 <nl></nl>

8.2.6 CAPACITY Subsystem

CAPACITY The subsystem is used to set the instrument battery capacity test settings.

Cap	: STATE	<on,off></on,off>
Command tree	: FETCH	<cap></cap>
	:FILE	<file1,file2,,file10></file1,file2,,file10>
	:TYPE	<li,nimh,nicd,sla></li,nimh,nicd,sla>
	:VOL	<float></float>
	:CAP	<float></float>
	:RCV	<float></float>
	:RCC	<float></float>
	:DCC	<float></float>
	:COV	<float></float>
	: PC	<on,off></on,off>
	:CYCLE	<int></int>

Chart 8- 6 CAPACITY Command tree

8.2.6.1 CAP:STATE

CAP:STATE Used to set battery capacity test status.

Command syntax	CAP:STATE < on,off >
Parameter	On: Start the test
	Off: Stop testing
Take for example	SEND > CAP:state on < <u>NL></u> //Set the instrument to start testing.
Query syntax	CAP:STATE?
Respond to querie	< on,off > <nl></nl>
Take for example	SEND > CAP: STATE? < <u>NL</u> >
	RECEIVE> on< <u>NL></u>

8.2.6.2 CAP:FETCH

CAP:FETCH Used to obtain battery capacity test results.

Query syntax	CAP: FETCH?
Respond to querie	<cap></cap>
Take for example	SEND > CAP:FETCH? <nl> RECEIVE> 1.0e-01<nl> //unit AH</nl></nl>

8.2.6.3 CAP:FILE

CAP:FILE Select the file for battery capacity test.	
Command syntax CAP:FILE < file1,file2,,file10 >	
Parameter	File1
	File2
	File10
Take for example	SEND > CAP:FILE file1 <nl> // Set parameters of battery capacity</nl>
	test call file 1
Query syntax	CAP:FILE?
Respond to querie	< file1,file2,,file10 > <nl></nl>
Take for example	SEND > CAP:FILE? <nl></nl>
	RECEIVE> file1 <nl></nl>

8.2.6.4 CAP:TYPE

CAP:TYPE Used to set the type of battery.

Command syntax	CAP:TYPE < Li,NiMH,NiCD,SLA >
Parameter	Li: Lithium battery
	NiMH: Nickel-hydrogen battery
	NiCD: Nickel cadmium batteries
	SLA: Lead-acid cell
Take for example	SEND > CAP: TYPE Li < <u>NL></u> // Set the battery type to lithium battery.
Query syntax	CAP: TYPE?
Respond to querie	< Li,NiMH,NiCD,SLA >< <u>NL></u>
Take for example	SEND > CAP:TYPE? RECEIVE> Li

8.2.6.5 CAP:VOL

CAP:VOL Used to set the nominal voltage value of the battery.

Command syntax	CAP:VOL < float >
Parameter	Float : Nominal voltage of the tested battery
Take for example	<pre>SEND > CAP:VOL 9.0</pre> // Set the nominal voltage of the battery to 9.0V
Query syntax	CAP:VOL?
Respond to querie	< float > <nl></nl>
Take for example	SEND > CAP: VOL?
	RECEIVE> 9.0e+00 <nl></nl>

8.2.6.6 CAP:CAP

CAP:CAP Used to set the nominal capacity of the battery.

Command syntax	CAP:CAP < float >
Parameter	Float : Nominal capacity of tested battery
Take for example	<pre>SEND > CAP:CAP 0.1<nl> // Set the nominal capacity of the battery to 0.1AH</nl></pre>
Query syntax	CAP:CAP?
Respond to querie	< float > <nl></nl>
Take for example	SEND > CAP:CAP? RECEIVE> 1.0e-01

8.2.6.7 CAP:RCV

Command syntax	CAP:RCV < float >
Parameter	Float : charging voltage
Take for example	SEND > CAP:RCV 9.0 <nl> // Set the charging voltage to 9.0V</nl>
Query syntax	CAP:RCV?
Respond to querie	< float > <nl></nl>
Take for example	SEND > CAP:RCV?< <u>NL</u> > RECEIVE> 9.0e+00< <u>NL</u> >

CAP:RCV Used to set the battery charging voltage.

8.2.6.8 CAP:RCC

CAP:RCC Used to set the battery charging current.

Command syntax	CAP:RCC < float >	
Parameter	Float : charging current	
Take for example	SEND > CAP:RCC 1.0 <nl> // Set the charging current to 1.0A</nl>	
Query syntax	CAP:RCC?	
Respond to querie	< float > <nl></nl>	
Take for example	SEND > CAP:RCC?< <u>NL</u> >	
	RECEIVE> 1.0e+00 <nl></nl>	

8.2.6.9 CAP:DCC

CAP:DCC Used to set the battery discharge current.

Command syntax	CAP:DCC < float >	
Parameter	Float : discharging current	
Take for example	SEND > CAP:DCC 1.0 <nl> // Set the discharge current to 1.0A</nl>	
Query syntax	CAP:DCC?	
Respond to querie	< float > <nl></nl>	
Take for example	SEND > CAP:DCC? <nl></nl>	
	RECEIVE> 1.0e+00 <nl></nl>	

8.2.6.10 CAP:COV

CAP:COV Used to set the battery cutoff voltage.

Command syntax	CAP:COV < float >
Parameter	Float : cutoff voltage
Take for example	SEND > CAP:COV 8.0 <nl> // Set the battery cutoff voltage to 8.0V</nl>
Query syntax	CAP:COV?
Respond to querie	< float > <nl></nl>
Take for example	SEND > CAP:COV? <nl></nl>
	RECEIVE> 8.0e+00 <nl></nl>

8.2.6.11 CAP:PC

CAP:PC Used to set battery pre-discharge.

Command syntax	CAP:PC < on,off >	
Parameter	On: Turn on the pre-discharge function	
	Off: Turn off the pre-discharge function	
Take for example	<pre>SEND > CAP:PC on<nl> // Set battery pre-discharge on</nl></pre>	
Query syntax	CAP:PC?	

Respond to querie	< on, off > <nl></nl>
Take for example	SEND > CAP:PC? RECEIVE> on

8.2.6.12 CAP:CYCLE

CAP:CYCLE Used to set the number of battery capacity test cycles.

Command syntax	CAP:CYCLE < int >
Parameter	int : Cycles
Take for example	<pre>SEND > CAP:CYCLE 1<nl> // Set the battery capacity test cycle once.</nl></pre>
Query syntax	CAP: CYCLE?
Respond to qu erie	< int >< <u>NL</u> >
Take for example	SEND > CAP:CYCLE?< <u>NL></u> RECEIVE> 1< <u>NL></u>

8.2.7 POWER subsystem

POWER The subsystem is used to set the power test settings.

Chart 8- 8 POWER Command tree		
Power	:VOL <level></level>	
Command tree	: FREQ	<50Hz,60Hz>
	:ILIMIT	<high>,<low></low></high>
: PLIMIT		<high>,<low></low></high>
	:TIME	<time></time>
: DELAY		<delay></delay>
	: FETCH	<vol>,<cur>,<power>,<pf></pf></power></cur></vol>

8.2.8 ERROR subsystem

ERRor Error information returned by subsystem

Query syntax	ERROR?		
Respond to querie	Error string		
Take for example	SEND > ERR?< <u>NL</u> > RECEIVE> no error< <u>NL</u> >		

8.2.9 IDN subsystem

IDN? Used to query the instrument ID number

Query syntax	IDN? Or *IDN?	
Respond to querie	<model>,<revision>,<sn>,<manufacturer></manufacturer></sn></revision></model>	

9.Modbus(RTU) protocol

This chapter provides all SCPI commands used by the instrument, through which all functions of the instrument can be completely controlled.

9.1 Data format

We follow Modbus(RTU) communication protocol, and the instrument will respond to the instructions of the upper computer and return the standard response frame.

See: You can contact the sales department of our company to obtain the communication test tool of Applent Instrument, which contains Modbus communication debugging method. Includes CRC-16 calculator and floating-point number, which is converted into Modbus floating-point number format.

9.1.1 Command parsing rules

Picture.9-1-1 Modbus Instruction frame

CRC-16 calculation range

Chart 9- 1 Instruction frame description

	A squelch interval of at least 3.5 characters is required.		
	1 byte		
Address of	Modbus can support 00~0x63 slave stations.		
slave station	Specify 00 when broadcasting uniformly.		
	In the instrument without RS485 option, the default slave address is 0x01		
	1 byte		
Function code 0x03: Read out multiple registers			
	0x04: =03H, do not use		
	0x06: Write to a single register, which can be replaced by 10H.		
	0x08: Echo test (only for debugging)		
	0x10: Write to multiple registers		
data	Specify the register address, number and content.		
CRC-16	2 bytes, low bits first		
	CyclicRedundancy Check		
	Calculate all the data from the station address to the end of the data to		

obtain the CRC16 check code.	
A squelch interval of at least 3.5 characters is required.	

9.1.2 CRC-16 Calculation method

- 1 Set the initial value of CRC-16 register to 0xFFFF.
- 2 XOR the CRC-16 register and the first byte of information, and return the calculation result to the

CRC register.

- 3 Fill the MSB with 0, and shift the CRC register by 1 bit to the right.
- 4 If the bit shifted from the LSB is "0", repeat step (3) (processing the next shift). If the bit shifted from the LSB is "1", please operate the CRC register and 0xA001 with XOR and return the result to the CRC register.
- 5 Repeat steps (3) and (4) until 8 bits are moved.
- 6 If the information processing is not finished, the CRC register and the next byte of information will

be XOR, and will be returned to the CRC register, which will be repeated from step (3)..

7 Append the calculated result (the value of CRC register) to the information from the lower byte.

The following is a CRC calculation function in VB language:

```
Function CRC16(data() As Byte) As Byte()
      Dim CRC16Lo As Byte, CRC16Hi As Byte
                                              'CRC register
      Dim CL As Byte, CH As Byte
                                       'polynomial code &HA001
      Dim SaveHi As Byte, SaveLo As Byte
      Dim i As Integer
      Dim flag As Integer
      CRC16Lo = \&HFF
      CRC16Hi = &HFF
      CL = \&H1
      CH = \&HA0
      For i = 0 To UBound(data)
          CRC16Lo = CRC16Lo Xor data(i) 'Each data is XOR with CRC register.
          For flag = 0 To 7
             SaveHi = CRC16Hi
             SaveLo = CRC16Lo
             CRC16Hi = CRC16Hi \ 2
                                       'The high bit is shifted to the right by one bit.
                                    'Move the lower bit to the right by one bit.
             CRC16Lo = CRC16Lo \setminus 2
             If ((SaveHi And &H1) = &H1) Then 'If the last bit of the upper byte is 1
                 CRC16Lo = CRC16Lo Or &H80 'Then the lower byte is shifted to the right,
followed by 1 in front.
             End If
                                'Otherwise, zero will be added automatically.
             If ((SaveLo And &H1) = &H1) Then 'If LSB is 1, XOR with polynomial code.
                 CRC16Hi = CRC16Hi Xor CH
                 CRC16Lo = CRC16Lo Xor CL
             End If
           Next flag
       Next i
       Dim ReturnData(1) As Byte
                                     'CRC high position
       ReturnData(0) = CRC16Hi
       ReturnData(1) = CRC16Lo
                                     'CRC low post
       CRC16 = ReturnData
       End Function
```

Refer to:

My company's "Applent Instrument Communication Testing Tool" contains Modbus communication debugging methods. Includes CRC-16 calculator...

The calculate CRC-16 data needs to be append to that end of the instruction frame, Take for example: 1234H:

Picture 9- 1-2 Modbus Additional CRC-16 value

9.1.3 Response Frame

Unless it is an instruction broadcast by 00H slave station address, other slave station address instruments will return a response frame.

9.1.4 No response

Under the following circumstances, the instrument will not do any processing or respond, resulting in communication timeout.

- 1. The slave address is wrong.
- 2. Transmission error.

- 3. CRC-16 error
- 4. Wrong number of digits, Take for example: function code 0x03 Total digits must be 8, While the number of bits received is less than 8 or more than 8 bytes.
- 5. When the slave station address is 0x00, it represents the broadcast address, and the instrument does not respond.

9.1.5 Error Code

Chart 9- 3 Description error code

Error code	Name	Illustration	Priority
0x01	Code error	Function code does not exist.	1
0x02	Register error	Register does not exist.	2
0x03	Data error	Wrong number of registers or bytes.	3
0x04	Execution error	The data is illegal, and the written data is	4
		not within the allowed range.	

9.2 Function code

The instrument only supports the following function codes, and other function codes will respond to error frames.

Function code	Name	Illustration
0x03	Read out multiple	Read out data of a plurality of consecutive registers.
	registers	
0x04	Same as 0x03	Use 0x03 instead.
0x08	Echo test	RECEIVE the data of is returned
0x10	Write to multiple	Write to multiple consecutive registers
	registers	

Chart 9- 4 Function code

9.3 **Register**

The number of registers in the instrument is 2-byte mode, that is, 2 bytes must be written at a time, Take for example: The register for speed is 0x3002, the data is 2 bytes, and the value must be written in 0x0001. Data:

The instrument supports the following numerical values:

- 1. One register, double-byte (16-bit) integer, Take for example: $0x64 \rightarrow 0064$
- 2. Two register, four byte (32 bit) integer, Take for example: 0x12345678 \rightarrow 12 34 56 78
- 3. Two register, four-byte (32-bit) single-precision floating point number, 3.14 \rightarrow 40 48 F5 C3

Refer to:

My company's "Applent Instrument Communication Testing Tool" contains Modbus communication debugging methods. Includes floating-point converter.

9.4 Read out multiple registers

Slave address	Function	Read out the start address	Number of elements	CRC-16
	H'03	T	Ĩ	1
 1	1	2	2	2 bytes

Picture 9- 4-1 Read out multiple registers (0x03)

The function codes of the read-out registers are 0x03.

Chart 9- 5 Read out multiple registers			
Parameter Name		Illustration	
	Address of slave	When no RS485 address is specified, the default value	
	station	is 01.	
0x03	Function code		
	Start address	Register start address, please refer to Modbus	
		instruction set.	
	Number of read	Number of consecutive registers read. Please refer to	
	registers	Modbus instruction set to ensure that these register	
	0001~006A (106)	addresses exist, otherwise an error frame will be	
		returned.	
CRC-16	Check code		

Picture 9-4-2 Read out the res	sponse frame o	of multiple regist	ers (0x03)

Slave address	Slave Function address code		Read data (element quantity part)	CRC-16		
	H'03		1	1		
1	1	1	0~212(2X106)	2		
Paramet	er	Name	Illustra	Illustration		
		Address of slave	Return as is			
		station				
0x03		Function code	No abnormality: 0x03			
0x83			Error code: 0x83			
		Number of bytes	=Number of registersx2			
			Take for example: One register return 02			
		Data	Read data			
CRC-16		Check code				

9.5 Write to multiple registers

Picture 9-5-1 Write to multiple registers (0x10)

0.10	Slave address	Function code	Read addre	start ss	Number of elements	Byte count	Read dat (element	a quantity part)	CRC-16
		H'10			1				
	1	1	2		2	1	0~208(2X104)	2
Char	t 9-6 V	Write to mu	ultiple re	egisters					
	Parameter Name					lustration			

Parameter	Name	liustration
	Address of slave	When no RS485 address is specified, the default value
	station	is 01.
0x10	Function code	
	Start address	Register start address, please refer to Modbus
		instruction set.
	Write to multiple	Number of consecutive registers read. Please refer to
	register	Modbus instruction set to ensure that these register
	0001~0068 (104)	addresses exist, otherwise an error frame will be
		returned.
	Number of bytes	=Number of registers x2
CRC-16	check code	

Picture 9- 5-2 Write multiple registers (0x03) response frame

Slave address	Function code	Function Write to the Number code start addresst of elements		CRC-16
	H'10		1	1
1	1	2	2	2 bytes

Parameter	Name	Illustration			
	Address of slave	Return as is			
	station				
0x10	Function code	No abnormality: 0x10			
Or 0x90		Error code: 0x90			
	Start address				
	Number of				
	registers				
	CRC-16 check code				

9.6 Echo test

Echo test function code 0x08, Used for debugging Modbus. Picture 9-6 Echo test (0x08)

Instruction frame

Slave address	Function code	Fixed value	Test date	CRC-16	
	H'08	H'00 H'00		Ĩ	
1	1	2	2	2 bytes	

Response frame

Slave address	Function code	Fixed value	Test date	CRC-16
	H'08	H'00 H'00		
1	1	2	2	2 bytes

Parameter	Name	Illustration		
	Address of slave	Return as is		
	station			
0x08	Function code			
	Fixed value	00 00		
	Test data	Any numerical value: Take for example 12 34		
	CRC-16 check code			

Take for example:

Assume that the test data is 0x1234.:

Instructions:	01	08	00 00	12 34	ED 7C(CRC-16)
Response:	01	08	00 00	12 34	ED 7C(CRC-16)

10. Modbus(RTU) instruction set

You will learn the following in this chapter:

Register address

Be sure to contact the sales department of our company to obtain the communication test tool of Amber Instrument, which contains Modbus communication debugging method. Includes CRC-16 calculator and floating-point number, which is converted into Modbus floating-point number format.

Note: Unless otherwise specified, the values of instruction and response frames in the following descriptions are hexadecimal data.

10.1 Register overview

The following table contains all register addresses for the instrument, and any address not in the table will return error code 0x02.

Register address	Name	Data value	Illustration
Battery capacity test			
2000	Battery capacity test switch	0000: Close the test	Read and write register, 2-byte integer
		0001: Start the test	
2001	Battery capacity file number	0000: File 1	Read and write register, 2-byte integer
		0001: File 2	
		0009: File 10	
2002	Battery type	0000: Lithium battery	Read and write register, 2-byte integer
		0001: NI-MH battery	
		0002: Nickel chromium	
		battery	
		0003: lead-acid cell	
2003	Battery nominal voltage	4 Byte floating point	Read and write registers, data occupies
		number	2 registers
2005	Nominal capacity of the battery	4 Byte floating point	Read and write registers, data occupies
		number	2 registers
2007	Battery charging voltage	4 Byte floating point	Read and write registers, data occupies
		number	2 registers
2009	Battery charging current	4 Byte floating point	Read and write registers, data occupies
		number	2 registers
200B	Battery discharge current	4 Byte floating point	Read and write registers, data occupies
		number	2 registers
200D	Battery cut-off voltage	4 Byte floating point	Read and write registers, data occupies
		number	2 registers
2010	Battery predischarge	0000: Turn off the	Read and write register, 2-byte integer
		pre-discharge	
		0001: Open the	

		predischarge	
2011	Number of battery cycles	0001~0x3E7	Read and write register, 2-byte integer
2012	Battery capacity value	4 Byte floating point	Read-only registers, data occupies 2
		number	registers
Voltage internal resist	tance test		
2100	Resistance range mode	0000: auto	Read and write register, 2-byte integer
		0001: hold	
2101	Resistance range number	0000~0005	Read and write register, 2-byte integer
2102	Voltage range	0000: auto	Read and write register, 2-byte integer
		0001 · hold	
2103	Voltage range number	0000~0001	Read and write register, 2-byte integer
2104	Upper limit of resistance	4 Byte floating point	Read and write registers, data occupies
2100	Desisten lauren linsit	number	2 registers
2106	Resistor lower limit	4 Byte floating point	Read and write registers, data occupies
2100		number	2 registers
2108	voltage upper limit	4 Byte floating point	Read and write registers, data occupies
2101	Lauran alta an Itazia	number	2 registers
210A	Lower voltage limit	4 Byte floating point	Read and write registers, data occupies
2100	Pattony internal registance value	A Byte fleating point	Z registers Road only registers data accuries 2
2100	Battery internal resistance value	4 Byte floating point	Read-only registers, data occupies 2
2105	Dettem vielte en vielve	A Dute fleeting point	Paged only registers data accurice 2
210E	Battery voltage value	4 Byte floating point	Read-only registers, data occupies 2
DC load tost		number	registers
	Load tost quitab		Dood and write register 2 bute integer
2200	Load lest switch	0000: Close the test	Read and write register, 2-byte integer
		0001: Start the test	
2201	Load test mode		Read and write register, 2-byte integer
		0000. Fixed Voltage	
		0001: Fixed current	
		0002: Fixed power	
		0002: Fixed resistance	
		0003. Fixed resistance	
2202	Voltage upper limit	4 Byte floating point	Read and write registers, data occupies
2204		number	2 registers
2204	Current upper limit	4 Byte floating point	Read and write registers, data occupies
2205	Development of the th	number	2 registers
2206	Power upper limit	4 Byte floating point	Read and write registers, data occupies
2200		A Dute fleeting point	2 registers
2208	voltage set value	4 Byte floating point	Read and write registers, data occupies
2204		A Dute fleeting point	2 registers
ZZUA		4 byte noating point	2 registers
2200	Power set value	A Puto floating point	Pood and write registers data accurate
2200		4 byte noating point	2 registers
2205	Resistor setting value	A Byte floating point	Read and write registers, data occupies
2200	Resistor setting value	number	2 registers
2210	Load voltage value	A Byte floating point	Read-only registers data occupies 2
2210		number	registers
2212	Load current value	4 Byte floating point	Read-only registers data occupies 2
		number	registers
2214	Load power value	4 Byte floating point	Read-only registers, data occupies 2
		number	registers
2216	Load resistance value	4 Byte floating point	Read-only registers. data occupies 2
		number	registers
DC power supply test	· · · · · · · · · · · · · · · · · · ·	1 2	
2300	Power test switch	0000: Close the test	Read and write register. 2-byte integer
		0001: Start the test	
2302	Power supply Output voltage	4 Byte floating point	Read and write registers, data occupies
	value	number	2 registers

2304	Power supply output current value	4 Byte floating point number	Read and write registers, data occupies 2 registers
2306	Power voltage value	4 Byte floating point	Read-only registers, data occupies 2
2000		number	registers
2308	Power current value	4 Byte floating point	Read-only registers, data occupies 2
		number	registers
230A	Power value of power supply	4 Byte floating point	Read-only registers, data occupies 2
2300	Power resistance value	4 Byte floating point	Read-only registers data occupies 2
2000		number	registers
synthetic test	1		
2400	Group test switch	0000: Close the test	Read and write register, 2-byte integer
		0001: Start the test	
2401	Group test files	0000: Group 1	Read and write register, 2-byte integer
		0001. Group 2	
		0009: Group 10	
2402	Group set of test battery type	0000: lithium battery	Read and write register, 2-byte integer
		0001: NI-MH battery	
		0002: Nickel chromium	
		batterv	
		0003: Lead-acid cell	
2404	Group to tost for the nominal	4 Puto floating point	Read and write registers, data eccupies
2404	voltage	4 Byte hoating point	2 registers
2408	Group test for nominal capacity	4 Byte floating point	Read and write registers data occupies
2400	Group test for normal capacity	number	2 registers
240A	Group test mode	0000° continuous	Read and write register, 2-byte integer
		0001: single step	
2408	Iotal number of cluster test steps	0001~0x14	Read and write register, 2-byte integer
240C	Group to test for the current number of steps	0000~0x13	Read and write register, 2-byte integer
2410	Group to test for the charging	4 Byte floating point	Read and write registers, data occupies
	voltage	number	2 registers
2412	Cluster test for the starting	4 Byte floating point	Read and write registers, data occupies
2414	Current	number	2 registers
2414	Group test cut-on current	number	2 registers
2416	Group test for stepping current	4 Byte floating point	Read and write registers, data occupies
		number	2 registers
2418	Group test time	4 Byte floating point	Read and write registers, data occupies
2444		number	2 registers
241A	voltage	4 Byte floating point	Read and Write registers, data occupies
2410	The lower limit of the cluster test	4 Byte floating point	Bead and write registers, data occupies
	voltage	number	2 registers
241E	Upper limit of the cluster test	4 Byte floating point	Read and write registers, data occupies
	current	number	2 registers
2420	Lower limit of the cluster test	4 Byte floating point	Read and write registers, data occupies
	current	number	2 registers
2422	The upper limit of the cluster test	4 Byte floating point	Read and write registers, data occupies
2424	Lower limit of the cluster test	4 Byte floating point	Read and write registers data occupies
2724	resistance	number	2 registers
2426	Upper limit of the cluster test time	4 Byte floating point	Read and write registers, data occupies
	··· ··································	number	2 registers
2428	Lower limit of the cluster testing	4 Byte floating point	Read and write registers, data occupies
	time	number	2 registers
242A	The way that the groups test the	0000: auto	Read and write register, 2-byte integer
	voltage range	0001 · hold	
----------------	------------------------------------	--------------------------	---
242B	Group test voltage range number	0000~0001	Read and write register 2-byte integer
2420	Group test resistance range mode	0000: auto	Read and write register, 2 byte integer
		0001: hold	
242D	Group test resistance range number	0000~0005	Read and write register, 2-byte integer
242E	Group testing function	0000: NULL	Read and write register, 2-byte integer
		0001: Battery activation	
		0002: Voltage internal	
		resistance	
		0003: Charging test	
		0004: Overcharge test	
		0005: DC internal	
		resistance	
		0006: Discharge test	
		0007: Over-put test	
		0008: Short circuit test	
		0009: recovery testing	
2430	Group test voltage value	4 Byte floating point	Read-only registers, data occupies 2
2/132	Group test current value	A Byte floating point	Read-only registers data occupies 2
2432	Group test current value	number	registers
2434	Group test resistance values	4 Byte floating point	Read-only registers, data occupies 2
2426		number	registers
2436	Group test time value	4 Byte floating point	Read-only registers, data occupies 2 registers
Basic Settings		number	
3000	Function Settings	0000: Voltage internal	Read and write register, 2-byte integer
		resistance	
		0001: DC load	
		0002: direct-current	
		main	
		0003: battery capacity	
		0004: Group testing	
3001	The buzzer setting	0000: close	Read and write register, 2-byte integer
		0001: open	
3002	Disqualified stop	0000: close	Read and write register, 2-byte integer
		0001: open	

10.2 Battery capacity register

10.2.1 Battery capacity test status register [2000]

read-in

1	2	3	4	5	6	7	8	9	10	11
01	10	20	00	00	01	02	00	01	46	52
	write	regis	ster	Numb regis	er of ters	byte	dat	а	CR	С

respond:

1	2	3	4	5	6	7	8
01	10	20	00	00	01	0A	09
		regis	ster	Numb	er of	CRC	2
				regis	ters		

From B8 to B9 are the test status data: 0001 = 1, At this time, the instrument test status is under test.

read and fetch

1	2	3	4	5	6	7	8
01	03	2	00	00	01	8F	CA
		0					
	read			Numb	er of	CRC	2
		regi	ster	regis	ters		

respond:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	byte	dat	a	CRC-	16

10.2.2 Battery capacity file number register [2001]

write in

01 10 20 01 00 01 02 00 01 47	1	2	2 3	4	5	6	7	8	9	10	11
	01	10	10 20	01	00	01	02	00	01	47	83
write register Number of byte data		write	rite regis	ster	Numb regis	er of ters	byte	dat	а	CR	C

respond:

1	2	3	4	5	6	7	8
01	10	20	01	00	01	5B	С9
		regi	ster	Numb	er of	CRC	2
				regis	ters		

From B8 to B9 are the file number data: 0001 = 1, the file displayed in the instrument is named FILE 1.

Read and fetch

1	2	3	4	5	6	7	8
01	03	2	01	00	01	DE	0A
		0					
	read	reg	ister	Numb regis	er of ters	CRC	

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	byte	dat	a	CRC-	16

10.2.3 Battery capacity Battery type register [2002]

Read-in

1	2	3	4	5	6	7	8	9	10	11
01	10	20	02	00	01	02	00	00	86	70
	write	regi	ster	Numb	er of	byte	dat	a	CR	С
				regis	ters					

respond:

1	2	3	4	5	6	7	8
01	10	20	02	00	01	AB	С9
		regi	ster	Numb	er of	CRC	2
				regis	ters		

From B8 to B9 are the battery type data: 0000 = 0, at this time, the battery type of the instrument is the lithium battery.

Read and fetch

1	2	3	4	5	6	7	8
01	03	20	02	00	01	2E	0A
	read	regi	ster	Numb	er of	CRC	2
				regis	ters		

respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CRC-	16

10.2.4 Battery nominal voltage register [2003]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	03	00	02	04	41	10	00	00	3F	82
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CF	RC

respond:

1	2	3	4	5	6	7	8
01	10	20	03	00	02	BA	08
		regi	register		Number of		2
				registers			

From B8 to B11 sets the data for the nominal voltage: 41100000 = 9.0, at this point, the nominal voltage is set to 9.0V.

Read and fetch

1	2	3	4	5	6	7	8
01	03	20	03	00	02	3F	СВ
	read	register		Number of		CRC	2
				registers			

respond:

1	2	3	4	5	6	7	8	9	
01	03	04	41	10	00	00	EF	CA	
01	03	byte	Single precision floating point CRC-16						
			number						

10.2.5 Battery nominal capacity state register [2005]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	05	00	02	04	3D	СС	СС	CD	F3	57
	write	regi	ster	Numb	Number of			dat	а		CR	۲C
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	20	05	00	02	5A	09
		register		Number of		CF	RC
				registers			

From B8 to B11 sets the data for the nominal capacity: 3DCCCCD = 0.1, the nominal capacity of the instrument is set to 0.1 AH.

Read and fetch

1	2	3	4	5	6	7	8
01	03	2	05	00	02	DF	CA
		0					
	read	reg	jister	Number o	of registers	CR	KC

respond:

1	2	3	4	5	6	7	8	9	
01	03	04	3D	CC	CC	CD	A3	35	
01	03	byte	Single	precisior	CRC	-16			
			number						

10.2.6 Battery charging voltage register [2007]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	07	00	02	04	41	10	00	00	3E	71
	write	regi	ster	Numb regis	Number of registers			dat	а		CF	RC
	٦.											

repond:

1	2	3	4	5	6	7	8
01	10	20	07	00	00 02		С9
		regi	ster	Number of registers		CR	C

From B8 to B11 is the charging voltage data: 41100000 = 9.0, at this time, the instrument charging voltage is set to 9.0V.

Read and fetch

1	2	3	4	5	6	7	8
01	03	20	07	00	02	7E	0A
	read	regi	ster	Numł	per of registers	CR	С

respond:

respon	ч .		-	-			-			
1	2	3	4	5	6	7	8	9		
01	03	04	41	10	00	00	EF	СА		
01	03	byte	Single	Single precision floating point C						
			number							

10.2.7 Battery charge current register [2009]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	09	00	02	04	3F	00	00	00	A6	10
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CR	C

respond:

1	2	3	4	5	6	7	8
01	10	20	09	00 02		9A	0A
		regi	ster	Number of registers		CR	C

From B8 to B11 sets the data for the charging current: 3F000000 = 0.5, at this time, the instrument charging current is set to 0.5A.

Read and fetch

1	2	3	4	5	6	7	8
01	03	20	09	00	02	1F	С9
	read	regi	ster	Number of	registers	CR	C

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	00	00	00	F6	27
01	03	byte	Single pre	umber	CRC	-16		

10.2.8 Battery discharge current register [200B]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	0B	00	02	04	3F	00	00	00	27	С9
	write	regi	ster	Numb	Number of		data				CR	RC
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	20	0B	00	02	3B	CA
		regi	ster	Nur	nber of registers	CR	С

From B8 to B11 are the discharge current setting data: 3F000000 = 0.5, at this time, the instrument discharge current is set to 0.5A.

1	2	3	4	5		6		7		8	
01	03	20	0B	00	00 02		BE		09		
	read	regi	ster	Nu	mber of	^f registers	5		CRC		
respon	d:										
1	2	3		4	5	6	7		8		9
01	03	04		3F	00	00	00		F6		27
01	03	byte	•	Single	precisio	n floating	g poir	nt	CF	RC-	16
					nur	nber					

10.2.9 Battery cutoff voltage register [200D]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	0D	00	02	04	41	00	00	00	BF	СВ
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CR	RC

respond:

1	2	3	4	5	6	7	8
01	10	20	0D	00	02	DB	СВ
		regi	ster	Number o	f registers	CR	С

From B8 to B11 sets the cut-off voltage data: 41000000 = 8.0, the instrument cut-off voltage is set at 8.0V.

Read and fetch

1	2	3	4	5	6	7	8
01	03	20	0D	00	02	5E	08
	read	register		Number o	f registers	CR	C

respond:

1	2	3	4	5	6	7	8	9
01	03	04	41	00	00	00	EE	OF
01	03	byte	Single p	umber	CRC	-16		

10.2.10 Battery capacity pre-discharge register [2010]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	20	10	00	01	02	00	01	44	C2
	write	regi	ster	Numb	er of	byte	data		CRC	
				regis	registers					

respond:

1	2	3	4	5	6	7	8
01	10	20	10	00 01		0B	СС
		register		Number of	CRC		

From B8 to B9 are the pre-discharge data: 0001 = 1, the instrument pre-discharge is set to open.

Read and fetch

Read and fetch

				_			
1	2	3	4	5	6	7	8
01	03	20	10	00	01	8E	OF
	read	register		Numb	er of	CRC	2
		registers					
respon	d:						
1	2	3		4	5	6	7
01	03	02		00	01	79	84
01	03	byt	e	dat	a	CRC-	16

10.2.11 Battery capacity cycle number register [2011]

byte

Write in

1	2	3	4	5	6	7	8	9	10	11	
01	10	20	11	00	01	02	00	01	45	13	
	write	regi	ster	Number o	byte	dat	а	CR	C		
respon	respond:										

1	2	3	4	5 6		7	8
01	10	20	11	00 01		5A	0C
		register		Number o	CRC		

From B8 to B9 are the cycle number data: 0001 = 1, at this time, the instrument cycle number is 1 time.

Read and fetch

1	2	3	4	5	5 6		8	
01	03	20	11	00	01	DF	CF	
	read	register		Number of	registers	CRC		

respond:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	byte	data		CRC-	16

10.2.12 Battery Capacity test result register [2012]

Read and fetch

1	2	3	4	5	6	7	8
01	03	20	12	00	02	6F	CE
	read	regi	ster	Number o	f registers	CR	С
recoord	•						

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3D	CC	сс	CD	A3	35
01	03	byte	Single	precisior	CRC-16			
				num				

From B4 to B7 are the battery capacity data tested: 3DCCCCCD = 0.1, the capacity value was 0.1 AH.

10.3 Voltage internal resistance test register

10.3.1 Resistance range mode register [2100]

|--|

1	2	3	4	5	6	7	8	9	10	11
01	10	21	00	00	01	02	00	00	97	52
	write	regi	ster	Numb	er of registers	byte	data		CR	С
rocnon										

respond:

	••••					-	
1	2	3	4	5	6	7	8
01	10	21	00	00	01	0B	F5
		regi	ster	Number o	f registers	CR	С

From B8 to B9 are the resistance range mode data: 0000 = 0, the resistance range mode is automatic.

Read and fetch

1	2	3	4	5	6	7	8
01	03	21	00	00	01	8E	36
	read	register		Number o	of registers	CRC	:

respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CF	RC-16

10.3.2 Resistance range number register [2101]

	•
Write	ın
v v i i ce	

1	2	3	4	5	6	7	8	9	10	11
01	10	21	01	00	01	02	00	00	96	83
	write	regi	ster	Number of registers		byte	dat	a	CR	C

respond:

1	2	3	4	5	6	7	8
01	10	21	01	00	01	5A	35
		regi	ster	Numb	er of registers	CR	С

From B8 to B9 are the resistance range mode data: 0000 = 0, the resistance range mode is automatic.

Read and fetch

1	2	3	4	5	6	7	8
01	03	21	00	00	01	DF	F6
	read	register		Number of	CR	С	

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CF	RC-16

10.3.3 Voltage-range mode register [2102]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	21	02	00	01	02	00	00	96	B0
	write	regi	ster	Number of		byte	dat	a	CR	С
				regis	ters					

respond:

1	2	3	4	5	6	7	8
01	10	21	02	00	01	AA	35
		regi	ster	Number of	^r egisters	CRC	2

From B8 to B9 are the voltage range mode data: 0000 = 0, the voltage range mode is automatic

Read and fetch

1	2	3	4	5	6	7	8
01	03	21	02	00	01	2F	F6
	read	register		Number c	CR	С	

respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CF	RC-16

10.3.4 Voltage and range number register [2103]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	21	03	00	01	02	00	00	97	61
	write	regi	ster	Numb regis	er of ters	byte	dat	a	CR	С

respond:

1	2	3	4	5	6	7	8
01	10	21	03	00	01	FB	F5
		regi	ster	Num	per of registers	CRO	2

From B8 to B9 are the voltage range mode data: 0000 = 0, the voltage range mode is automatic.

Read and fetch

1	2	3	4	5	6	7	8
01	03	21	03	00	01	7E	36
	read	regi	ster	Number of registers CR		С	

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	dat	a	CF	RC-16

10.3.5 Upper resistance limit register [2104]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	04	00	02	04	43	96	00	00	93	A5
	write	regi	ster	Numb	er of	byte		da	ta		CR	RC
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	21	04	00	02	0A	35
		regi	ster	Number of registers		CRO	2

From B8 to B11 set data for upper resistance: 43960000 = 300.0, at this time, the upper resistance limit of the instrument is set to 300.0Ω .

Read and fetch:

1	2	3	4	5	6	7	8
01	03	21	04	00	02	8F	F6
	read	reg	ister	Number o	of registers	CR	С

respond:

1	2	3	4	5	6	7	8	9
01	03	04	43	96	00	00	0F	9B
01	03	byte	Single	precisio	n floating	g point	CRC	-16
				num	nber			

10.3.6 Lower resistance register [2106]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	06	00	02	04	3A	83	12	6F	56	68
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CF	RC

respond:

1	2	3	4	5	6	7	8
01	10	21	06	00	02	AB	F5
		regi	ster	Numb	er of registers	CRC	

From B8-B11 set the data for the lower resistance limit: 3A83126F = 0.001, the lower limit of the instrument resistance is set to $1m\Omega$.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	21	06	00	02	2E	36
	read	reg	ister	Number o	f registers	CR	C

1	2	3	4	5	6	7	8	9
01	03	04	3A	83	12	6F	4B	8F
01	03	byte	Single	precisio	n floating	g point	CRC	-16
				num	nber			

10.3.7 Upper-voltage limit register [2108]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	08	00	02	04	41	F0	00	00	72	57
	write	regi	ster	Numb	Number of			da	ta		CR	RC .
				regis	registers							

respond:

1	2	3	4	5	6	7	8
01	10	21	08	00	02	CA	36
		regi	ster	Number of		CF	RC
				regis	ters		

From B8 to B11 set the data for the upper voltage limit: 40F00000 = 30.0, the upper voltage limit of the instrument is set at 30.0V.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	21	08	00	02	4F	F5
	read	register		Number of	CRC		

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	00	00	00	EE	3C
01	03	byte	Single	precisior	g point	CRC	-16	
				num				

10.3.8 Lower-voltage limit register [210A]

write

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	0A	00	02	04	3F	80	00	00	EA	7D
	write	regi	ster	Numl	per of	byte	data				CR	C
				regi	registers							

respond:

1	2	3	4	5	6	7	8
01	10	21	0A	00	02	6B	F6
		regi	ster	Number of		CF	RC
				registers			

From B8 to B11 sets the data for the lower voltage limit: 3F800000 = 1.0, the lower voltage limit of the instrument is set to 1.0V.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	21	0A	00	02	EE	35
	read	register		Numb	er of	CR	С
				regist	ters		

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	byte	Single pre	CRC	-16			

10.3.9 Resistance test result register [210C]

Read and fetch:

1	2	3	4	5	6	7	8		
01	03	21	0C	00	02	0E	34		
	read	regi	ster	Num	ber of registers	CR	C		
responde									

roc	non	d •
162	μυπ	u.

1	2	3	4	5	6	7	8	9		
01	03	04	3C	23	D7	0A	D8	5E		
01	03	byte	Single	Single precision floating point						
				num						

From B4 to B7 are the resistance test data tested: 3C23D70A = 0.01, the resistance value was 0.01Ω .

10.3.10 Voltage test result register [210E]

Read and fetch:

1	2	3	4		5	6		7	8	
01	03	21	0E	E 00		02		AF	F4	
	read	regi	ster	N	Number of registers			C	RC	
respond:									_	
1	2	3	4		5	6		7	8	9
01	03	04	41	10 00			(00	EF	CA
01	03	byte	Si	Single precision floating point						-16
				number						

From B4 to B7 are the resistance test data tested: 3C23D70A = 0.01, the resistance value was 0.01Ω .

10.4 The DC load test register

10.4.1 Load test status register [2200]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	22	00	00	01	02	00	01	65	92
	write	Number o	f registers	regis	ter	byte	dat	a	CR	RC

respond:

тезроп	u.						
1	2	3	4	5	6	7	8
01	10	22	00	00	01	0B	B1
		regi	ster	Number o	CR	С	

From B8 to B9 are the test status data: 0001 = 1, at this time, the instrument test status is under test.

Read and fetch:

03

1	2	3	4		5	6		7	8
01	03	22	00		00	01		8E	72
	read	regi	ster	Number of registers				CR	С
respon	d:								
1	2	3	4		5	6	7		
01	03	02	00)	01	79	84		

data

10.4.2 Load test mode register [2201]

byte

Write in

01

1	2	3	4	5	6	7	8	9	10	11
01	10	22	01	00	01	02	00	00	A5	83
	write	Number of	f registers	regi	ster	byte	dat	a	CR	С
rocpor	vd.									

CRC-16

respond:

1	2	3	4	5	6	7	8
01	10	22	01	00	01	5A	71
		regi	ster	Number of	registers	CR	C

From B 8 to B 9 is the test mode: 0000 = 0, now the instrument test mode is the fixed voltage.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	22	01	00	01	DF	B2
	read	regi	ster	Number of registers		CR	RC .

respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CRC	-16

10.4.3 Upper-voltage limit register [2202]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	02	00	02	04	41	F0	00	00	E6	D8
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CF	RC

respond:

1	2	3	4	5	5 6		8
01	10	22	02	00	02	EA	70
		regi	ster	Number of	CR	С	

From B8 to B11 set the data for the upper voltage limit: 40F00000 = 30.0, the upper voltage limit of the instrument is set at 30.0V.

1	2	3	4	5		6		7	8		
01	03	22	02	00		02		6F	B3		
	read	reg	ister	Number	r of reg	jisters		CI	RC		
respon	d:										
1	2	3		4	5		6		7	8	9
01	03	04		41	FO		0	D	00	EE	30
01	03	bvt	e	Single pr	ecisior	n floati	na p	oint n	umber	CRC	-16

Read and fetch:

10.4.4 Current upper limit register [2204]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	04	00	02	04	41	70	00	00	67	1A
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CF	RC

respond:

1	2	3	4	5	6	7	8
01	10	22	04	00	00 02		71
		regi	ster	Number of	CRO	C	

From B8 to B11 set the data for the upper current limit: 41700000 = 15.0, the upper current limit of the instrument is set at 15.0A.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	22	04	00	02	8F	B2
	read	reg	ister	Number of r	egisters	CR	С

respond:

1	2	3	4	5	6	7	8	9
01	03	04	41	70	00	00	EF	D4
01	03	byte	Single pr	recision floa	ting point r	number	CRC	-16

10.4.5 Power limit register [2206]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	06	00	02	04	42	C8	00	00	66	A2
	write	regi	ster	Numb	er of	byte		da	ta		CF	RC
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	22	06	00	02	AB	B1
		regi	ster	Number of	registers	CR	С

From B8 to B11 sets the data for the upper power limit: 42C80000 = 1000.0, the upper power limit of the instrument is set at 100.0W.

Read and return	Read	and	fetch	ļ
-----------------	------	-----	-------	---

1	2	3	4	5	6	7	8
01	03	22	06	00	02	2E	72
	read	regi	ster	Number c	of registers	CR	С

respond:

1	2	3	4	5	6	7	8	9
01	03	04	42	C8	00	00	6F	B5
01	03	byte	Single pr	ecision floa	ting point r	number	CRC	-16

10.4.6 Voltage setting value register [2208]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	08	00	02	04	41	F0	00	00	66	A7
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CR	RC
rocnon	d.											

respond:

1	2	3	4	5	6	7	8
01	10	22	08	00	02	CA	72
		regi	ster	Number o	f registers	CR	С

From B8 to B11 set the data for the load voltage setting value: 41F00000 = 30.0 ,the instrument load is 30.0V.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	22	08	00	02	4F	B1
	read	regi	ster	Number of registers		CR	C

respond:

1	2	3	4	5	6	7	8	9
01	03	04	41	F0	00	00	EE	3C
01	03	byte	Single pre	ecision float	ing point i	number	CRC	-16

10.4.7 Current setting point register [220A]

	•
Write	חו ב

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	0A	00	02	04	3F	80	00	00	FE	8D
	write	regi	ster	Numb	er of	byte		da	ta		CF	RC
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	22	0A	00	02	6B	B2
		regi	ster	Number of r	egisters	CRO	2

Frome B8 to B11 sets the data for the load current setting value: 3F800000 = 1.0, the instrument load setting value is 1.0A.

1	2	3	4	5	6		7		8		
01	03	22	0A	00	02		EE		71		
	read	reg	ister	Numbe	er of registe	rs		CRC	2		
respon	d:										
1	2	3		4	5	6		7		8	9
01	03	04	L I	3F	80	00		0)	F7	CF
01	03	byt	e	Single pr	ecision floa	ting p	oint n	umb	er	CRC	-16

Read and fetch:

10.4.8 The Power Setpoint register [220C]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	0C	00	02	04	42	C8	00	00	E6	DD
	write	regi	ster	Numb regis	er of ters	byte		da	ta		CR	RC

respond:

1	2	3	4	5	6	7	8
01	10	22	0C	00	02	8B	B3
		regi	ster	Number of	registers	CR	C

From B8 to B11 sets the data for the load power setting value: 42C80000 = 100.0, the instrument load is 100.0W.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	22	0C	00	02	0E	70
	read	regi	ister	Number o	f registers	CF	RC

respond:

1	2	3	4	5	6	7	8	9
01	03	04	42	C8	00	00	6F	B5
01	03	byte	Single pre	cision floatir	ng point n	umber	CRC	·16

10.4.9 Resistance setpoint register [220E]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	0E	00	02	04	44	7A	00	00	С7	AB
	write	regi	ster	Numb	er of	byte		da	ta		CR	RC
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	22	0E	00	02	2A	73
		regi	ster	Number of	registers	CRC	

From B8 to B11 sets the data for the load resistance settings: 447A0000 = 1000.0, at this point, the instrument load set value is 1000.0 Ω .

Read a	nd fetch	:					
1	2	3	4	5	6	7	8
01	03	22	0E	00	02	AF	B0
	read	reg	ister	Number of	[:] registers	CR	С

respond:

1	2	3	4	5	6	7	8	9
01	03	04	44	7A	00	00	CF	1A
01	03	byte	Single	precisio	n floating	g point	CRC	-16
				num	nber			

10.4.10 Voltage result register [2210]

Read and fetch:

1	2	3	4	5		6	7	8
01	03	22	0A	00		02	CF	B6
	read	reg	ister	Num	ber of r	egisters	CI	۲C
respon	d:							
1	2	2		4	F	6	7	0

1	2	3	4	5	6	7	8	9		
01	03	04	41	F0	00	00	EE	3C		
01	03	byte	Single	Single precision floating point CRC						
				num	nber					

From B4 to B7 are the voltage test data: 41F00000 = 30.0, the voltage value is 30V.

10.4.11 Current result register [2212]

Read and fetch:

1	2	3	4	5	6	7	8
01	03	22	12	00	02	6E	76
	read	reg	ister	Number of r	CF	RC	

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	byte	Single pr	CRC	-16			

From B4 to B7 are the current test data of the test: 3F800000 = 1.0, the current value is 1.0A.

10.4.12 Power result register [2214]

Read and fetch:

1	2	3	4	5	5 6		8
01	03	22	14	00	00 02		77
	read	reg	ister	Number o	CR	C	

respond:

1	2	3	4	5	6	7	8	9
01	03	04	41	20	00	00	EF	C5
01	03	byte	Single	CRC	-16			

From B4 to B7 are the power test data tested: 41200000 = 10.0, the power value is set at 10W.

10.4.13 Resistance result register [2216]

Read and fetch:

1	2	3	4	5			6	7	8]	
01	03	22	16	00			02	2F	B7		
	read	reg	jister	r Number of registers CRC							
respon	d:									_	
1	2	3		4	5		6	7	,	8	9
01	03	04	4	11	10		00	0	0	EF	CA
01	03	byte	Si	Single precision floating point number CRC-16							-16

From B4 to B7 are the resistance test data tested: $41F00000 = 9.0\Omega$, the resistance value was 9Ω .

10.5 The DC power supply test register

10.5.1 Power supply test status register [2300]

Write i	n										
1	2	3		4	5	6	7	8	9	10	11
01	10	23		00	00 00 0		02 00		01	75	52
	write	Number of registers			regis	ster	byte	da	ata	CR	C
respor	nd:				-						
1	2	3	4	5	6		7	8			
01	10	23	00	00	01		0A	4D			
		regi	ster	Number	of regist	ers	CRC				

From B8 to B9 are the test status data: 0001 = 1, at this time, the instrument test status is under test.

Read and fetch:

1	2	3	4	5 6		7	8					
01	03	23	00	00	00 01		8E					
	read	regi	ster	Number o	CR	RC						
respon	respond:											
1	2	2	1	E C		7						

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	byte	data		CRC	-16

10.5.2 Voltage output register [2302]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	23	02	00	02	04	41	10	00	00	EA	BE
	write	regi	ster	Numb	er of	byte		da	ta		CR	C
				registers								

1	2	3	4	5	6	7	8
01	10	23	02	00	02	EB	8C
		regi	ster	Number o	f registers	CF	RC

From B8 to B11 sets the data for the voltage output: 41100000 = 9.0, at this point, the instrument voltage output is set to 9.0V.

Read and fetch:

1	2	3	4	5		6 7		7	8	
01	03	23	02	00		02		6E	4F	
	read	regi	ister	Nun	CRC					
respon	d:									
1	2	3		4	5	6		7	8	9
01	03	04		41	41 10 00 00			0	EF	CA
01	03	byt	e	Single	CRC	-16				
				number						

10.5.3 Current output register [2304]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	23	04	00	02	04	3F	80	00	00	72	91
	write	regi	ster	Numb	er of	byte		da	ta		CR	RC
				regis	lers							

respond:

1	2	3	4	5	6	7	8
01	10	23	02	00	02	0B	8D
		regi	ster	Number of registers		CR	C

From B8 to B11 sets the data for the current output: 3F800000 = 1.0, at this point, the instrument current output is set to 1.0A.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	23	04	00	02	8E	4E
	read	reg	ister	Number of registers		CR	С

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	byte	Single	precisior	n floating	g point	CRC	-16
				num	nber			

10.5.4 Voltage result register [2306]

Read and fetch:

1	2	3	4	5	6	7	8
01	03	23	06	00	02	2F	8E
	read	reg	ister	Number o	f registers	CR	C

respond	:	

1	2	3	4	5	6	7	8	9
01	03	04	41	F0	00	00	EE	3C
01	03	byte	Single	precisior	n floating	g point	CRC	·16
				num	nber			

From B4 to B7 are the voltage test data: 41F00000 = 30.0 , the voltage value is 30V.

10.5.5 Current result register [2308]

Read and fetch:

1	2	3	4	5	6	7	8
01	03	23	08	00	02	4E	4D
	read	reg	ister	Number of registers		CR	с

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	byte	Single	precisioı num	n floating nber	g point	CRC	-16

From B4 to B7 are the current test data of the test: 3F800000 = 1.0, the current value is 1.0A.

10.5.6 Power result register [230A]

Read and fetch:

1	2	3	4	5	6	7	8
01	03	23	0A	00	02	EF	8D
	read	reg	ister	Number o	f registers	CR	C

respond:

1	2	3	4	5	6	7	8	9	
01	03	04	41	20	00	00	EF	C5	
01	03	byte	Single	precisio	n floating	g point	CRC	-16	
			number						

From B4 to B7 are the power test data tested: 41200000 = 10.0, the power value is set at 10W.

10.5.7 Resistance result register [230C]

Read and fetch:

1	2	3	4	5	6	7	8
01	03	23	0C	00	02	0F	8C
	read	reg	ister	Number o	f registers	CR	С

respond:	
----------	--

1	2	3	4	5	6	7	8	9		
01	03	04	41	10	00	00	EF	CA		
01	03	byte	Single precision floating point CRC-16							
				number						

From B4 to B7 are the resistance test data tested : 41F00000 = 9.0 Ω , the resistance value was 9 $~\Omega$

10.6 Integrated test register

10.6.1 Integrated test status register [2400]

Write i	n									
1	2	3	4	5	6	7	8	9	10	11
01	10	24	00	00	01	02	00	01	03	92
	write	Number o	f registers	regi	ster	byte	da	ta	CR	C

respond:

1	2	3	4	5	6	7	8
01	10	24	00	00 01		0B	39
		regi	ster	Number of registers		CR	C

From B8 to B9 are the test status data: 0001 = 1, at this time, the instrument test status is under test.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	00	00 01		8E	FA
	read	regi	ster	Number of registers		CR	C

respond:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	byte	data		CRC	-16

10.6.2 Group test file register [2401]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	01	00	01	02	00	01	02	43
	write	Number o	registers reg		ster	byte	dat	а	CR	C

respond:

1	2	3	4	5	6	7	8
01	10	24	00	00 01		0A	F9
		regi	ster	Number of registers		CR	C

From B8 to B9 is the file data: 0001 = 1, at this time, the instrument group test group number is group 2.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	01	00 01		DF	3A
	read	regi	ster	Number of registers		CR	С

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	byte	data		CRC	-16

10.6.3 Group test battery type register [2402]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	02	00	01	02	00	00	C3	B0
	write	Number o	f registers	regis	ter	byte	dat	a	CR	С
respon	ld:									

1	2	3	4	5	6	7	8
01	10	24	02	00 01		AA	F9
		regi	ster	Number of registers		CR	C

From B8 to B9 are the battery type data: 0000 = 0, at this time, the instrument group battery type is lithium battery.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	02	00	01	2F	3A
	read	register		Number of	f registers	CR	C

respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CRC	-16

10.6.4 Nominal voltage value register [2404]

write

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	04	00	02	04	41	10	00	00	4C	A4
	write	regi	ster	Numb	Number of			da	ta		CR	KC
				registers								

respond:

1	2	3	4	5	6	7	8
01	10	24	04	00	02	0A	F9
		regi	ster	Number o	f registers	CRO	2

From B8 to B11 sets the data for the nominal voltage: 41100000 = 9.0, the nominal voltage of the instrument is set at 9.0V.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	04	00	02	8F	3A
	read	register		Number of	CR	С	

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	СА
01	03	byte	Single precision floating point number					-16

10.6.5 Nominal capacity value register [2408]

write

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	08	00	02	04	3F	80	00	00	54	F4
	write	regi	ster	Numb regis	Number of registers			da	ta		CR	C

respond:

1	2	3	4	5	6	7	8
01	10	24	08	00	02	CA	FA
		register		Number of	CR	C	

From B8 to B11 sets the data for the nominal capacity: 3F800000 = 1.0, the nominal capacity of the instrument is then set to 1.0 AH.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	08	00	02	4F	39
	read	register		Number o	CR	С	

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	byte	Single pr	CRC	-16			

10.6.6 Group test mode register [240A]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	0A	00	01	02	00	00	C2	F8
	read	Number of registers		regis	ter	byte	dat	а	CR	С
respon	respond:									

1	2	3	4	5	6	7	8
01	10	24	0A	00	01	2B	3B
		register		Number o	f registers	CR	C

From B8 to B9 are the data of the cluster test mode: 0000 = 0, at this time, the instrument cluster test mode is continuous.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	0A	00	01	AE	F8
	read	regi	ster	Number o	f registers	CR	С

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CRC	-16

10.6.7 Group test total step number register [240B]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	0B	00	01	02	00	09	03	2F
	write	Number o	regis	ster	Byte	da	ta	CR	C	
respon	nd:									

1	2	3	4	5	6	7	8
01	10	24	0B	00	01	7A	FB
		regi	ster	Number of registers		CR	С

From B8 to B9 are the data of the total test step count: 0009 = 9, at this time, the total number of instrument cluster test steps is 9.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	0B	00	01	FF	38
	read	regi	ster	Number of	registers	CR	C

respond:

1	2	3	4	5	6	7
01	03	02	00	09	78	42
01	03	byte	data		CRC-	16

10.6.8 The Group tests the current step number register [240C]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	0C	00	01	02	00	00	C2	9E
	write	Numb regis	er of ters	regis	ter	byte	d	lata	CI	RC

respond:

1	2	3	4	5	6	7	8
01	10	24	0C	00	01	СВ	3A
		regi	ster	Number o	f registers	CF	RC

From B 8 to B 9 are the current step count data: 0000 = 0, the current number of steps of the instrument group is step 1.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	0C	00	01	4E	F9
	rea	regi	ster	Number o	of registers	CF	RC
	d						

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CRC	-16

10.6.9 Charge voltage value register [2410]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	10	00	02	04	41	10	00	00	4C	5B
	write	regi	ster	Numb	er of	byte	data		-	CR	C	
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	24	10	00	02	4A	FD
		regi	ster	Numb	er of	CF	RC
				regis	ters		

From B8 to B11 sets the data for the charging voltage: 41100000 = 9.0, at this time, the instrument charging voltage is set to 9.0V.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	10	00	02	CF	3E
	read	register		Numb	er of	CR	С
				registers			

respond:

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	СА
01	03	byte	Single	precisio	g point	CRC	-16	

10.6.10 Start the current value register [2412]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	1	00	02	04	3D	СС	СС	С	81	7D
			2							D		
	write	regi	ster	Number of registers		byte	data				CR	С

respond:

1	2	3	4	5	6	7	8
01	10	24	12	00	0 02		3D
		register		Number o	CR	C	

From B8 to B11 sets the data for the starting current: 3DCCCCCD = 0.1, at this point, the instrument starting current is set to 0.1A.

Read and fetch:

1	2	3	4	5	5 6		8
01	03	24	12	00	02	6E	FE
	read	register		Number o	f registers	CR	С

respond:

1	2	3	4	5	6	7	8	9	
01	03	04	3D	СС	СС	CD	A3	35	
01	03	byte	Single	precisio	CRC	-16			
			number						

10.6.11 Cut-off current value register [2414]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	14	00	02	04	3F	80	00	00	55	AD
	write	regi	ster	Number of registers		byte		dat	а		CR	С

respond:

1	2	3	4	5	5 6		8
01	10	24	14	00 02		0B	3C
		register		Number o	CR	C	

From B8 to B11 sets the data for the cut-off current: 41100000 = 9.0, the instrument cut-off current is set to 1.0A.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	14	00	02	8E	FF
	read	register		Numb	er of	CR	С
				registers			

respond:

1	2	3	4	5	6	7	8	9	
01	03	04	3F	80	00	00	F7	CF	
01	03	byte	Single	precisior	g point	CRC	-16		
			number						

10.6.12 Stepper current value register [2416]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	16	00	02	04	3D	СС	СС	CD	80	8E
	write	regi	ster	Numb regis	Number of registers			da	ta		CR	С
respor	nd:											

1	2	3	4	5	6	7	8
01	10	24	16	00	00 02		FC
		regi	ster	Number o	f registers	CR	С

From B8 to B11 sets the data for the stepping current: 3DCCCCD = 0.1, at this time, the instrument stepping current is set to 0.1A.

Read a	nd fetch	:										
1	2	3	4	5		6		7		8		
01	03	24	16	00		02		2F		3F		
	read	reg	ister	Numb	er of	[:] register	S		CR	С		
respon	d:										-	
1	2	3		4		5	6			7	8	9
01	03	04		3D		cc	СС			CD	A3	35
01	03	byt	e	Single p	recisi	ion float	ing poi	int nu	umk	ber	CRC	-16

10.6.13 The cluster test time register [2418]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	18	00	02	04	40	A0	00	00	4D	E6
	write	regi	ster	Numb regis	er of ters	byte		dat	a		CR	C
respor	nd.											

espond

1	2	3	4	5	6	7	8
01	10	24	18	00	02	СВ	3F
		regi	ster	Number o	f registers	CF	RC

From B8 to B11 sets the data for the test time: 40A00000 = 5.0, at this time, the instrument test time is set to 5.0S.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	18	00	02	4E	FC
	read	reg	ister	Number o	f registers	CR	C

respond:

1	2	3	4	5	6	7	8	9
01	03	04	40	A0	00	00	EF	D1
01	03	byte	Single pr	ecision floa	ting point r	number	CRC	-16

10.6.14 Upper voltage limit register [241A]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	1A	00	02	04	41	F0	00	00	CD	D2
	write	regi	ster	Numb	er of	byte		data			CR	C
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	24	1A	00	02	6A	FF
		regi	ster	Number of registers		CR	С

From B8 to B11 set the data for the upper voltage limit: 41F00000 = 30.0, the upper voltage limit of the instrument is set at 30.0V.

1	2	3	4	5	6		7	8		
01	03	24	1A	00	02		EF	3C		
	read	reg	ister	Number	of register	ſS	С	RC		
respon	d:					-			• 	
1	2	3		4	5	6	5	7	8	9
01	03	04		41	F0	0	0	00	EE	3C
01	03	bvt	e	Single pr	ecision floa	atina	point r	number	CRC	-16

Read and fetch:

10.6.15 Lower voltage limit register [241C]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	1C	00	02	04	3D	СС	СС	CD	00	F1
	write	regi	ster	Numb regis	er of ters	byte			data		CR	С

respond:

1	2	3	4	5	6	7	8
01	10	24	1C	00	02	8A	FE
		regi	ster	Number o	f registers	CR	C

From B8 to B11 sets the data for the lower voltage limit: 3DCCCCCD = 0.1, the lower voltage limit of the instrument is set to 0.1V.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	1C	00	02	OF	3D
	read	register		Number o	f registers	CR	с

respond:

1	2	3	4	5	6	7	8	9		
01	03	04	3D	сс	сс	CD	A3	35		
01	03	byte	Single pr	Single precision floating point number						

10.6.16 Current limit register [241E]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	1E	00	02	04	40	A0	00	00	CD	СС
	write	regi	ster	Numb regist	er of ters	byte		da	ta		CR	С

respond:

1	2	3	4	5	6	7	8
01	10	24	1E	00	00 02		3E
		register		Number o	f registers	CR	С

From B8 to B11 set the data for the upper current limit: 40A00000 = 5.0, the upper limit of the instrument current is set to 5.0A.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	1E	00	02	AE	FD
	read	register		Number of		CR	С
				regist	ters		

respond:

1	2	3	4	5	6	7	8	9
01	03	04	40	A0	00	00	EF	D4
01	03	byte	Single	precisio	g point	CRC	-16	
				num				

10.6.17 Current down-limit register [2420]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	20	00	02	04	3D	СС	СС	CD	03	B0
	write	regi	register Number		ber	byte	data				CR	C
		of		:								
				regist	ters							

respond:

1	2	3	4	5	6	7	8
01	10	24	20	00	00 02		F2
		regi	ster	Number o	f registers	CR	C

From B8 to B11 set the data for the lower current limit: 3DCCCCCD = 0.1, the lower current limit of the instrument is set to 0.1A.

Read and fetch:

1	2	3	4	5	6	7	8
01	03	24	20	00	02	CF	31
	read	reg	ister	Number o	CR	C	

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3D	cc	сс	CD	A3	35
01	03	byte	Single	precisio	g point	CRC	-16	
				num				

10.6.18 Upper resistance limit register [2422]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	22	00	02	04	43	96	00	00	2E	C7
	write	regi	ster	Number		byte	data				CF	RC
				regist	registers							

respond:

1	2	3	4	5	6	7	8
01	10	24	22	00	02	EB	32
		register		Numb	er of	CF	RC
				registers			

From B8 to B11 set data for upper resistance: 43960000 = 300.0, at this time, the upper resistance limit of the instrument is set to 300.0 Ω .

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	22	00	02	6E	F1
	read	register		Numb	er of	CR	С
				registers			

respond:

1	2	3	4	5	6	7	8	9
01	03	04	43	96	00	00	OF	9B
01	03	byte	Single	precisio	CRC	-16		
				num				

10.6.19 Resistance lower limit register [2424]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	24	00	02	04	3A	83	12	6F	EA	F9
	write	regi	ster	er Number		byte	data				CR	C
				of								
				regis	ters							

respond:

1	2	3	4	5	6	7	8
01	10	24	24	00	02	0B	33
		register		Numb	er of registers	CR	С

From B8-B11 set the data for the lower resistance limit: 3A83126F = 0.001, The lower limit of the instrument resistance is set to $1m \Omega$.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	24	00	02	8E	F0
	read	register		Number o	CR	С	

1	2	3	4	5	6	7	8	9
01	03	04	3 A	83	12	6F	4B	8F
01	03	byte	Single	precisio	g point	CRC	-16	
				num				

10.6.20 Upper time limit register [2426]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	26	00	02	04	44	79	F9	9A	DD	8E
	write	regi	ster	Numb regis	er of ters	byte		dat	a		CR	C

respond:

1	2	3	4	5	6	7	8
01	10	24	26	00	02	AA	F3
		register		Number o	CRC	_	

From B8 to B11 sets the data for the upper time limit: 4479F99A = 999.9, the upper time limit of the instrument is set at 999.9S.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	26	00	02	2F	30
	read	register		Number of	CR	С	

respond:

1	2	3	4	5	6	7	8	9
01	03	04	44	79	F9	9A	FD	21
01	03	byte	Single pre	CRC	-16			

10.6.21 Time lower limit register [2428]

Write in

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	28	00	02	04	3D	СС	СС	CD	02	16
	write	regi	ster	r Number register		byte		dat	ta		CR	C

respond:

1	2	3	4	5	6	7	8
01	10	24	28	00	02	СВ	30
		register		Number o	CR	C	

From B8 to B11 sets the data for the lower time limit: 3DCCCCD = 0.1, the lower time limit of the instrument is set to 0.1S.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	28	00	02	4E	F3
	read	reg	ister	Number o	CR	С	

1	2	3	4	5	6	7	8	9
01	03	04	3D	сс	сс	CD	A3	35
01	03	byte	Single	precisior	CRC	-16		

10.6.22 Voltage-range mode register [242A]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2A	00	01	02	00	00	C5	98
	write	regi	ster	Numb	er of	byte	dat	a	CR	C
				reais	ters					

respond:

1	2	3	4	5	6	7	8
01	10	24	2A	00	01	2A	F1
		regi	ster	Number o	f registers	CR	С

From B8 to B9 are the voltage range mode data: 0000 = 0, the voltage range mode is automatic.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	2A	00	01	AF	32
	read	reg	ister	Number of registers		CR	C

respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CF	RC-16

10.6.23 Voltage and range number register [242B]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2B	00	01	02	00	00	C4	49
	write	regi	ster	Numb regis	er of ters	byte	dat	ta	CR	C

respond:

1	2	3	4	5	6	7	8
01	10	24	2B	00	01	7B	31
		regi	ster	Number of registers		CR	С

From B8 to B9 are the voltage range number data: 0000 = 0, the voltage range number is 0.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	2B	00	01	FE	F2
	read	regi	ster	Number o	f registers	CR	C

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CF	RC-16

10.6.24 Resistance range mode register [242C]

write

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2C	00	01	02	00	00	C5	FE
	write	regi	ster	Numb	er of	byte	dat	a	CR	С
				reais	ters					

respond:

1	2	3	4	5	6	7	8
01	10	24	2C	00	01	CA	F0
		regi	ster	Number of registers		CRO	2

From B8 to B9 are the resistance range mode data: 0000 = 0, the resistance range mode is automatic.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	2C	00	01	4F	33
	read	reg	ister	Number o	f registers	CR	C

respond:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	dat	a	CF	RC-16

10.6.25 Resistance range number register [242D]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2D	00	01	02	00	00	C4	2F
	write	regi	ster	Number of registers		byte	dat	а	CR	C

respond:

1	2	3	4	5	6	7	8
01	10	24	2D	00	01	9B	30
		regi	ster	Number of registers		CR	С

From B8 to B9 are the resistance range number data: 0000 = 0, the resistance range number is 0.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	2D	00	00 01		F3
	read	reg	ister	Number o	f registers	CRO	2

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	Byte	dat	ta	CF	RC-16

10.6.26 The cluster test function register [242E]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2E	00	01	02	00	01	EE	E4
	write	regi	ster	Numb	er of	byte	dat	а	CR	С
				regis	ters					

respond:

1	2	3	4	5	6	7	8
01	10	24	2E	00	01	6B	30
		regi	ster	Number of registers		CR	С

From B8 to B9 are the cluster test functional data: 0001 = 1, the current step test function is battery active.

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	2E	00	01	EE	F3
	read	reg	ister	Number o	f registers	CR	С

respond:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	byte	dat	a	CF	RC-16

10.6.27 Voltage result register [2430]

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	30	00	02	CE	F4
	read	reg	ister	Number o	of registers	CR	С

respond:

1	2	3	4	5	6	7	8	9
01	03	04	41	F0	00	00	EE	3C
01	03	byte	Single	precisior	n floating	g point	CRC-	-16
				num	nber			

From B4 to B7 are the voltage test data: 41F00000 = 30.0, the voltage value is 30V.

10.6.28 Current result register [2432]

Read and fetch

1	2	3	4	5	6	7	8
01	03	24	32	00	02	6F	34
	read	reg	ister	Number o	of registers	CR	C

respond:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	byte	Single	precisio	n floating	g point	CRC	-16
				num	nber			

From B4 to B7 are the current test data of the test: 3F800000 = 1.0, the current value is 1.0A.

9 C5

CRC-16

CRC-16

10.6.29 Resistance result register [2434]

1	2	3	4	5		6		7	8		
01	03	24	34	00 02			8F	35			
	read	reg	ister	Number of register			rs	CRC			
respon	d:						_		-		
1	2	3		4		5	6		7		8
01	03	04		41		20	00		00		EF

Read and fetch

Single precision floating point number From B4 to B7 are the resistance test data for the current test step: 41200000 = 10.0, the power value was set at 10Ω .

10.6.30 Time result register [2436]

byte

Read	and	fetch

03

03

01

1	2	3	4	5		6	7	8		
01	03	24	36	00	C	2	2E	F5		
	read	reg	ister	Number of registers			CR	C		
respon	d:								-	
1	2	3		4	5	6		7	8	9
01	03	04		3F	00	00	0	0	F6	27

From B4 to B7 are the time test data for the current step test: 3F000000 = 0.5, the time value was 0.5S.

Single precision floating point number

10.7 Base setting of the register

byte

10.7.1 Integrated test status register [3000]

Write in

01

1	2	3	4	5	6	7	8	9	10	11
01	10	30	00	00	01	02	00	00	96	53
	write	Number of registers		regis	ster	byte	da	ta	CR	С

respond:

1	2	3	4	5	6	7	8
01	10	30	00	00	01	0E	С9
		regi	ster	Number o	f registers	C	RC

From B8 to B9 are the test function data: 0000 = 0, at this point, the instrument test function is the battery internal resistance test.

Read and fetch

1	2	3	4	5	6	7	8	
01	03	30	00	00	01	8B	0A	
	read	register		Number o	f registers	CRC		

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CRC	-16

10.7.2 The buzzer register [3001]

Write in

1	2	3	4	5	6	7	8	9	10	11	
01	10	30	01	00	01	02	00	01	56	42	
	write	Number of registers		regis	ter	byte	dat	ta	CR	C	

respond:

1	2	3	4	5	6	7	8				
01	10	30	01	00 01		5F	09				
		register		Number o	CRC						

From B8 to B9 are the test function data: 0001 = 1, at this point, the instrument buzzer is open.

Read and fetch

1	2	3	4	5	6	7	8
01	03	30	01	00	01	DA	CA
	read	regi	ster	Number of	f registers	CR	С
respon	nd.						

espona.

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	byte	data		CRC	-16

10.7.3 Unqualified stop register [3002]

Write in

1	2	3	4	5	6	7	8	9	10	11
01	10	30	02	00	01	02	00	00	56	71
	write	Number of registers		regis	ster	byte	dat	a	CR	C

respond:

1	2	3	4	5	6	7	8
01	10	30	02	00	01	AF	09
		register		Number of registers		CRC	

From B8 to B9 are the test function data: 0001 = 1, at this point, the unqualified instrument stop function is turned on.

Read and fetch

1	2	3	4	5	6	7	8
01	03	30	02	00	01	2A	CA
	read	register		Number of registers		CRC	

1	2	3	4	5	6	7	
01	03	02	00	01	79	84	
01	03	byte	data		CRC-16		
11. Processor (Handler) interface

You will learn about the following in this chapter:

- HANDLER (PLC) interface
- Alarm lamp interface

11.1 HANDLER(PLC)interface

This series tester is equipped with a 15 PIN D connection terminal that provides PLC remote input and output control signal (linked to PLC controller), as shown in the figure. These terminals and the standard 15 PIN D-type are match and must be provided by the user. To achieve optimal results, it is recommended to use the shielding line as a connecting line for the control and output information. In order not to connect the shielding line into a loop and affect the shielding effect, only the shielding network at one end of the shielding line can be grounded.

Picture 11-1

Input/output	pin	Name	illustration
signal input	15	START	When the START is shorted with the GND, start the instrument
		ļ	measurement
	14	STOP	The instrument stops when the STOP is shorted to the GND for
			the measurement
signal output	1	PASS	When the test is qualified, the high level will be output
	2	FAIL	When the test fails, the output is high level
	3	TEST	When starting the test, the high level will be output
External power supply	9	GND	The external negative electrode is grounded
	10	VCC	External power supply
	11	GND	The external negative electrode is grounded

```
12. specifications
```

You will learn about the following in this chapter:

- qualification
- general requirements
- physical dimension

12.1 Qualification

The following data are measured under the following conditions:

- temperature condition : 23°C±5°C
- Humidity conditions: ≤65% R.H.
- Zero value adjustment: short circuit and zero before test
- preheating time: >60minutes
- Calibration time: 12 months

Test the current accuracy: 10% Test the current frequency accuracy: 1kHz(1±20Hz),5ppm

12.2 general requirements

screen : TFT-LCD	real color display, with a touch screen, a screen size of 5 inches	
calibration:	Short circuit full range zero	
measuring section: Four-end test		
data logging:	USB memorizer	
beep:	Pass, qualified, and unqualified	
trigger:	Internal, external (manual and remote) triggers	
interface :	Processor (Handler) interface	
	The RS232 interface	
programming lang	uage : SCPI 和 Modbus(RTU)	
additional function	: Keyboard lock	

12.3 Environmental requirements

Measuring the environment:

	Index: temperature 18°C ~28°C humidity <65% RH
	Operation: temperature 10°C ~40°C humidity 10 ~ 80% RH
	Storage: temperature 0°C ~50°C humidity 10 ~ 90% RH
source:	200VAC~240VAC
fuse:	250V 1ASlow melting
power:	maximum120VA
weight:	about 5 kg

12.4 Physical dimension

@ Instruments -AT5800 user's manual-Simplified Chinese version ©2005-2021all right reserved: 常州安柏精密仪器有限公司 Applent Instruments Ltd.